Objective assessment of bradykinesia in Parkinson’s disease using evolutionary algorithms: clinical validation
Abstract Background There is an urgent need for developing objective, effective and convenient measurements to help clinicians accurately identify bradykinesia. The purpose of this study is to evaluate the accuracy of an objective approach assessing bradykinesia in finger tapping (FT) that uses evol...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2018-08-01
|
Series: | Translational Neurodegeneration |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s40035-018-0124-x |
id |
doaj-22721e229bb54bd9a2df316a9d12989b |
---|---|
record_format |
Article |
spelling |
doaj-22721e229bb54bd9a2df316a9d12989b2020-11-25T02:23:39ZengBMCTranslational Neurodegeneration2047-91582018-08-01711810.1186/s40035-018-0124-xObjective assessment of bradykinesia in Parkinson’s disease using evolutionary algorithms: clinical validationChao Gao0Stephen Smith1Michael Lones2Stuart Jamieson3Jane Alty4Jeremy Cosgrove5Pingchen Zhang6Jin Liu7Yimeng Chen8Juanjuan Du9Shishuang Cui10Haiyan Zhou11Shengdi Chen12Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineDepartment of Electronic Engineering, University of YorkDepartment of Computer Science, Heriot-Watt UniversityDepartment of Neurology, Leeds General Infirmary, Leeds Teaching Hospitals NHS TrustDepartment of Neurology, Leeds General Infirmary, Leeds Teaching Hospitals NHS TrustDepartment of Neurology, Leeds General Infirmary, Leeds Teaching Hospitals NHS TrustDepartment of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineDepartment of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineDepartment of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineDepartment of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineDepartment of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineDepartment of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineDepartment of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineAbstract Background There is an urgent need for developing objective, effective and convenient measurements to help clinicians accurately identify bradykinesia. The purpose of this study is to evaluate the accuracy of an objective approach assessing bradykinesia in finger tapping (FT) that uses evolutionary algorithms (EAs) and explore whether it can be used to identify early stage Parkinson’s disease (PD). Methods One hundred and seven PD, 41 essential tremor (ET) patients and 49 normal controls (NC) were recruited. Participants performed a standard FT task with two electromagnetic tracking sensors attached to the thumb and index finger. Readings from the sensors were transmitted to a tablet computer and subsequently analyzed by using EAs. The output from the device (referred to as "PD-Monitor") scaled from − 1 to + 1 (where higher scores indicate greater severity of bradykinesia). Meanwhile, the bradykinesia was rated clinically using the Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) FT item. Results With an increasing MDS-UPDRS FT score, the PD-Monitor score from the same hand side increased correspondingly. PD-Monitor score correlated well with MDS-UPDRS FT score (right side: r = 0.819, P = 0.000; left side: r = 0.783, P = 0.000). Moreover, PD-Monitor scores in 97 PD patients with MDS-UPDRS FT bradykinesia and each PD subgroup (FT bradykinesia scored from 1 to 3) were all higher than that in NC. Receiver operating characteristic (ROC) curves revealed that PD-Monitor FT scores could detect different severity of bradykinesia with high accuracy (≥89.7%) in the right dominant hand. Furthermore, PD-Monitor scores could discriminate early stage PD from NC, with area under the ROC curve greater than or equal to 0.899. Additionally, ET without bradykinesia could be differentiated from PD by PD-Monitor scores. A positive correlation of PD-Monitor scores with modified Hoehn and Yahr stage was found in the left hand sides. Conclusions Our study demonstrated that a simple to use device employing classifiers derived from EAs could not only be used to accurately measure different severity of bradykinesia in PD, but also had the potential to differentiate early stage PD from normality.http://link.springer.com/article/10.1186/s40035-018-0124-xParkinson’s diseaseBradykinesiaEvolutionary algorithmsObjective assessmentClinical validation |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Chao Gao Stephen Smith Michael Lones Stuart Jamieson Jane Alty Jeremy Cosgrove Pingchen Zhang Jin Liu Yimeng Chen Juanjuan Du Shishuang Cui Haiyan Zhou Shengdi Chen |
spellingShingle |
Chao Gao Stephen Smith Michael Lones Stuart Jamieson Jane Alty Jeremy Cosgrove Pingchen Zhang Jin Liu Yimeng Chen Juanjuan Du Shishuang Cui Haiyan Zhou Shengdi Chen Objective assessment of bradykinesia in Parkinson’s disease using evolutionary algorithms: clinical validation Translational Neurodegeneration Parkinson’s disease Bradykinesia Evolutionary algorithms Objective assessment Clinical validation |
author_facet |
Chao Gao Stephen Smith Michael Lones Stuart Jamieson Jane Alty Jeremy Cosgrove Pingchen Zhang Jin Liu Yimeng Chen Juanjuan Du Shishuang Cui Haiyan Zhou Shengdi Chen |
author_sort |
Chao Gao |
title |
Objective assessment of bradykinesia in Parkinson’s disease using evolutionary algorithms: clinical validation |
title_short |
Objective assessment of bradykinesia in Parkinson’s disease using evolutionary algorithms: clinical validation |
title_full |
Objective assessment of bradykinesia in Parkinson’s disease using evolutionary algorithms: clinical validation |
title_fullStr |
Objective assessment of bradykinesia in Parkinson’s disease using evolutionary algorithms: clinical validation |
title_full_unstemmed |
Objective assessment of bradykinesia in Parkinson’s disease using evolutionary algorithms: clinical validation |
title_sort |
objective assessment of bradykinesia in parkinson’s disease using evolutionary algorithms: clinical validation |
publisher |
BMC |
series |
Translational Neurodegeneration |
issn |
2047-9158 |
publishDate |
2018-08-01 |
description |
Abstract Background There is an urgent need for developing objective, effective and convenient measurements to help clinicians accurately identify bradykinesia. The purpose of this study is to evaluate the accuracy of an objective approach assessing bradykinesia in finger tapping (FT) that uses evolutionary algorithms (EAs) and explore whether it can be used to identify early stage Parkinson’s disease (PD). Methods One hundred and seven PD, 41 essential tremor (ET) patients and 49 normal controls (NC) were recruited. Participants performed a standard FT task with two electromagnetic tracking sensors attached to the thumb and index finger. Readings from the sensors were transmitted to a tablet computer and subsequently analyzed by using EAs. The output from the device (referred to as "PD-Monitor") scaled from − 1 to + 1 (where higher scores indicate greater severity of bradykinesia). Meanwhile, the bradykinesia was rated clinically using the Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) FT item. Results With an increasing MDS-UPDRS FT score, the PD-Monitor score from the same hand side increased correspondingly. PD-Monitor score correlated well with MDS-UPDRS FT score (right side: r = 0.819, P = 0.000; left side: r = 0.783, P = 0.000). Moreover, PD-Monitor scores in 97 PD patients with MDS-UPDRS FT bradykinesia and each PD subgroup (FT bradykinesia scored from 1 to 3) were all higher than that in NC. Receiver operating characteristic (ROC) curves revealed that PD-Monitor FT scores could detect different severity of bradykinesia with high accuracy (≥89.7%) in the right dominant hand. Furthermore, PD-Monitor scores could discriminate early stage PD from NC, with area under the ROC curve greater than or equal to 0.899. Additionally, ET without bradykinesia could be differentiated from PD by PD-Monitor scores. A positive correlation of PD-Monitor scores with modified Hoehn and Yahr stage was found in the left hand sides. Conclusions Our study demonstrated that a simple to use device employing classifiers derived from EAs could not only be used to accurately measure different severity of bradykinesia in PD, but also had the potential to differentiate early stage PD from normality. |
topic |
Parkinson’s disease Bradykinesia Evolutionary algorithms Objective assessment Clinical validation |
url |
http://link.springer.com/article/10.1186/s40035-018-0124-x |
work_keys_str_mv |
AT chaogao objectiveassessmentofbradykinesiainparkinsonsdiseaseusingevolutionaryalgorithmsclinicalvalidation AT stephensmith objectiveassessmentofbradykinesiainparkinsonsdiseaseusingevolutionaryalgorithmsclinicalvalidation AT michaellones objectiveassessmentofbradykinesiainparkinsonsdiseaseusingevolutionaryalgorithmsclinicalvalidation AT stuartjamieson objectiveassessmentofbradykinesiainparkinsonsdiseaseusingevolutionaryalgorithmsclinicalvalidation AT janealty objectiveassessmentofbradykinesiainparkinsonsdiseaseusingevolutionaryalgorithmsclinicalvalidation AT jeremycosgrove objectiveassessmentofbradykinesiainparkinsonsdiseaseusingevolutionaryalgorithmsclinicalvalidation AT pingchenzhang objectiveassessmentofbradykinesiainparkinsonsdiseaseusingevolutionaryalgorithmsclinicalvalidation AT jinliu objectiveassessmentofbradykinesiainparkinsonsdiseaseusingevolutionaryalgorithmsclinicalvalidation AT yimengchen objectiveassessmentofbradykinesiainparkinsonsdiseaseusingevolutionaryalgorithmsclinicalvalidation AT juanjuandu objectiveassessmentofbradykinesiainparkinsonsdiseaseusingevolutionaryalgorithmsclinicalvalidation AT shishuangcui objectiveassessmentofbradykinesiainparkinsonsdiseaseusingevolutionaryalgorithmsclinicalvalidation AT haiyanzhou objectiveassessmentofbradykinesiainparkinsonsdiseaseusingevolutionaryalgorithmsclinicalvalidation AT shengdichen objectiveassessmentofbradykinesiainparkinsonsdiseaseusingevolutionaryalgorithmsclinicalvalidation |
_version_ |
1724858083619897344 |