Cylindrical Bending of Deformable Textile Rectangular Patch Antennas

Textile patch antennas are well known as basic components for wearable systems that allow communication between a human body and the external world. Due to their flexibility, textile antennas are subjected to bending when worn, causing a variation in resonance frequency and radiation pattern with re...

Full description

Bibliographic Details
Main Authors: Freek Boeykens, Luigi Vallozzi, Hendrik Rogier
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2012/170420
Description
Summary:Textile patch antennas are well known as basic components for wearable systems that allow communication between a human body and the external world. Due to their flexibility, textile antennas are subjected to bending when worn, causing a variation in resonance frequency and radiation pattern with respect to the flat state in which their nominal design is performed. Hence, it is important for textile antenna engineers to be able to predict these performance parameters as a function of the bending radius. Therefore, we propose a comprehensive analytical model that extends the cylindrical cavity model for conformal rigid patch antennas by incorporating the effects of patch stretching and substrate compression. It allows to predict the resonance frequency and the radiation pattern as a function of the bending radius. Its validity has been verified experimentally. Unlike previous contributions, which concerned only qualitative studies by means of measurements and numerical full-wave simulations, the proposed model offers advantages in terms of physical insight, accuracy, speed, and cost.
ISSN:1687-5869
1687-5877