Thin accretion disks and charged rotating dilaton black holes

Abstract Einstein-Maxwell-dilaton theory is an interesting theory of gravity for studying scalar fields in the context of no-hair theorem. In this work, we consider static charged dilaton and charged, slowly rotating dilaton black holes in Einstein-Maxwell-dilaton gravity. We investigate the accreti...

Full description

Bibliographic Details
Main Authors: Mohaddese Heydari-Fard, Malihe Heydari-Fard, Hamid Reza Sepangi
Format: Article
Language:English
Published: SpringerOpen 2020-04-01
Series:European Physical Journal C: Particles and Fields
Online Access:http://link.springer.com/article/10.1140/epjc/s10052-020-7911-0
Description
Summary:Abstract Einstein-Maxwell-dilaton theory is an interesting theory of gravity for studying scalar fields in the context of no-hair theorem. In this work, we consider static charged dilaton and charged, slowly rotating dilaton black holes in Einstein-Maxwell-dilaton gravity. We investigate the accretion process in thin disks around such black holes, using the Novikov-Thorne model. The electromagnetic flux, temperature distribution, energy conversion efficiency and also innermost stable circular orbits of thin disks are obtained and effects of dilaton and rotation parameters are studied. For the static and slowly rotating black holes the results are compared to that of Schwarzschild and Kerr, respectively.
ISSN:1434-6044
1434-6052