Improving the Quality of Pyrolysis Oil from Co-firing High-density Polyethylene Plastic Waste and Palm Empty Fruit Bunches

This study aimed to produce and improve the quality of pyrolysis oil as a source of bioenergy that is made by mixing palm empty fruit bunch (EFB) with high-density polyethylene (HDPE) plastic waste. The slow co-pyrolysis method was employed, and HDPE waste and EFB were fed into the pyrolysis rea...

Full description

Bibliographic Details
Main Authors: Eny Kusrini, Dijan Supramono, Volkan Degirmenci, Saeful Pranata, Aji Agraning Bawono, Farid Nasir Ani
Format: Article
Language:English
Published: Universitas Indonesia 2018-12-01
Series:International Journal of Technology
Subjects:
EFB
Online Access:http://ijtech.eng.ui.ac.id/article/view/2531
Description
Summary:This study aimed to produce and improve the quality of pyrolysis oil as a source of bioenergy that is made by mixing palm empty fruit bunch (EFB) with high-density polyethylene (HDPE) plastic waste. The slow co-pyrolysis method was employed, and HDPE waste and EFB were fed into the pyrolysis reactor at HDPE amounts of 0, 10, 25, 50, 75, and 100% by weight. The pyrolysis oil product was obtained by co-firing EFB with HDPE using the slow co-pyrolysis method in a fixed bed reactor at 500°C with a flow rate of 750 mL/min and a heating rate of 5°C/min. The chemical compositions of pyrolysis oil were analyzed by gas chromatography-mass spectroscopy. A pyrolysis oil produced by HDPE 100 wt.% was dominated by the chemical compounds of phenols, aromatics, aliphatic, and acids, while for EFB 100 wt.% was dominated with aldehydes, acids, phenols, furan and aliphatic. The addition of HDPE reduced the amount of pyrolysis oil yield, increased the pH, reduced the viscosity, and reduced the oxygen content of the pyrolysis oil. These results proved that the HDPE affected the decrease in pyrolysis oil and the increase in gas production from co-firing HDPE and EFB using the slow co-pyrolysis method.
ISSN:2086-9614
2087-2100