Parallel Tracking and Mapping for Controlling VTOL Airframe

This work presents a vision based system for navigation on a vertical takeoff and landing unmanned aerial vehicle (UAV). This is a monocular vision based, simultaneous localization and mapping (SLAM) system, which measures the position and orientation of the camera and builds a map of the environmen...

Full description

Bibliographic Details
Main Authors: Michal Jama, Dale Schinstock
Format: Article
Language:English
Published: Hindawi Limited 2011-01-01
Series:Journal of Control Science and Engineering
Online Access:http://dx.doi.org/10.1155/2011/413074
Description
Summary:This work presents a vision based system for navigation on a vertical takeoff and landing unmanned aerial vehicle (UAV). This is a monocular vision based, simultaneous localization and mapping (SLAM) system, which measures the position and orientation of the camera and builds a map of the environment using a video stream from a single camera. This is different from past SLAM solutions on UAV which use sensors that measure depth, like LIDAR, stereoscopic cameras or depth cameras. Solution presented in this paper extends and significantly modifies a recent open-source algorithm that solves SLAM problem using approach fundamentally different from a traditional approach. Proposed modifications provide the position measurements necessary for the navigation solution on a UAV. The main contributions of this work include: (1) extension of the map building algorithm to enable it to be used realistically while controlling a UAV and simultaneously building the map; (2) improved performance of the SLAM algorithm for lower camera frame rates; and (3) the first known demonstration of a monocular SLAM algorithm successfully controlling a UAV while simultaneously building the map. This work demonstrates that a fully autonomous UAV that uses monocular vision for navigation is feasible.
ISSN:1687-5249
1687-5257