Real-Time Estimation of <i>R</i><sub>0</sub> for COVID-19 Spread

We propose a real-time approximation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>R</mi><mn>0</mn></msub></semantics></math></inline-formula> in an...

Full description

Bibliographic Details
Main Authors: Theodore E. Simos, Charalampos Tsitouras, Vladislav N. Kovalnogov, Ruslan V. Fedorov, Dmitry A. Generalov
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/6/664
Description
Summary:We propose a real-time approximation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>R</mi><mn>0</mn></msub></semantics></math></inline-formula> in an SIR-type model that applies to the COVID-19 epidemic outbreak. A very useful direct formula expressing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>R</mi><mn>0</mn></msub></semantics></math></inline-formula> is found. Then, various type of models are considered, namely, finite differences, cubic splines, Piecewise Cubic Hermite interpolation and linear least squares approximation. Preserving the monotonicity of the formula under consideration proves to be of crucial importance. This latter property is preferred over accuracy, since it maintains positive <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>R</mi><mn>0</mn></msub></semantics></math></inline-formula>. Only the Linear Least Squares technique guarantees this, and is finally proposed here. Tests on real COVID-19 data confirm the usefulness of our approach.
ISSN:2227-7390