An Automatic Emergency Braking Model considering Driver’s Intention Recognition of the Front Vehicle
Driver’s intention of the front vehicle plays an important role in the automatic emergency braking (AEB) system. If the front vehicle brakes suddenly, there is potential collision risk for following vehicle. Therefore, we propose a driver’s intention recognition model for the front vehicle, which is...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi-Wiley
2020-01-01
|
Series: | Journal of Advanced Transportation |
Online Access: | http://dx.doi.org/10.1155/2020/5172305 |
id |
doaj-224309a8a7e049d1b2b6372446bde1e4 |
---|---|
record_format |
Article |
spelling |
doaj-224309a8a7e049d1b2b6372446bde1e42020-12-21T11:41:25ZengHindawi-WileyJournal of Advanced Transportation0197-67292042-31952020-01-01202010.1155/2020/51723055172305An Automatic Emergency Braking Model considering Driver’s Intention Recognition of the Front VehicleWei Yang0Jiajun Liu1Kaixia Zhou2Zhiwei Zhang3Xiaolei Qu4School of Automobile, Chang’an University, Xi’an 710064, ChinaSchool of Automobile, Chang’an University, Xi’an 710064, ChinaSchool of Automobile, Chang’an University, Xi’an 710064, ChinaSchool of Automobile, Chang’an University, Xi’an 710064, ChinaSchool of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100083, ChinaDriver’s intention of the front vehicle plays an important role in the automatic emergency braking (AEB) system. If the front vehicle brakes suddenly, there is potential collision risk for following vehicle. Therefore, we propose a driver’s intention recognition model for the front vehicle, which is based on the backpropagation (BP) neural network and hidden Markov model (HMM). The brake pedal, accelerator pedal, and vehicle speed data are used as the input of the proposed BP-HMM model to recognize the driver’s intention, which includes uniform driving, normal braking, and emergency braking. According to the recognized driver’s intention transmitted by Internet of vehicles, an AEB model for the following vehicle is proposed, which can dynamically change the critical braking distance under different driving conditions to avoid rear-end collision. In order to verify the performance of the proposed models, we conducted driver’s intention recognition and AEB simulation tests in the cosimulation environment of Simulink and PreScan. The simulation test results show that the average recognition accuracy of the proposed BP-HMM model was 98%, which was better than that of the BP and HMM models. In the Car to Car Rear moving (CCRm) and Car to Car Rear braking (CCRb) tests, the minimum relative distance between the following vehicle and the front vehicle was within the range of 1.5 m–2.7 m and 2.63 m–5.28 m, respectively. The proposed AEB model has better collision avoidance performance than the traditional AEB model and can adapt to individual drivers.http://dx.doi.org/10.1155/2020/5172305 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Wei Yang Jiajun Liu Kaixia Zhou Zhiwei Zhang Xiaolei Qu |
spellingShingle |
Wei Yang Jiajun Liu Kaixia Zhou Zhiwei Zhang Xiaolei Qu An Automatic Emergency Braking Model considering Driver’s Intention Recognition of the Front Vehicle Journal of Advanced Transportation |
author_facet |
Wei Yang Jiajun Liu Kaixia Zhou Zhiwei Zhang Xiaolei Qu |
author_sort |
Wei Yang |
title |
An Automatic Emergency Braking Model considering Driver’s Intention Recognition of the Front Vehicle |
title_short |
An Automatic Emergency Braking Model considering Driver’s Intention Recognition of the Front Vehicle |
title_full |
An Automatic Emergency Braking Model considering Driver’s Intention Recognition of the Front Vehicle |
title_fullStr |
An Automatic Emergency Braking Model considering Driver’s Intention Recognition of the Front Vehicle |
title_full_unstemmed |
An Automatic Emergency Braking Model considering Driver’s Intention Recognition of the Front Vehicle |
title_sort |
automatic emergency braking model considering driver’s intention recognition of the front vehicle |
publisher |
Hindawi-Wiley |
series |
Journal of Advanced Transportation |
issn |
0197-6729 2042-3195 |
publishDate |
2020-01-01 |
description |
Driver’s intention of the front vehicle plays an important role in the automatic emergency braking (AEB) system. If the front vehicle brakes suddenly, there is potential collision risk for following vehicle. Therefore, we propose a driver’s intention recognition model for the front vehicle, which is based on the backpropagation (BP) neural network and hidden Markov model (HMM). The brake pedal, accelerator pedal, and vehicle speed data are used as the input of the proposed BP-HMM model to recognize the driver’s intention, which includes uniform driving, normal braking, and emergency braking. According to the recognized driver’s intention transmitted by Internet of vehicles, an AEB model for the following vehicle is proposed, which can dynamically change the critical braking distance under different driving conditions to avoid rear-end collision. In order to verify the performance of the proposed models, we conducted driver’s intention recognition and AEB simulation tests in the cosimulation environment of Simulink and PreScan. The simulation test results show that the average recognition accuracy of the proposed BP-HMM model was 98%, which was better than that of the BP and HMM models. In the Car to Car Rear moving (CCRm) and Car to Car Rear braking (CCRb) tests, the minimum relative distance between the following vehicle and the front vehicle was within the range of 1.5 m–2.7 m and 2.63 m–5.28 m, respectively. The proposed AEB model has better collision avoidance performance than the traditional AEB model and can adapt to individual drivers. |
url |
http://dx.doi.org/10.1155/2020/5172305 |
work_keys_str_mv |
AT weiyang anautomaticemergencybrakingmodelconsideringdriversintentionrecognitionofthefrontvehicle AT jiajunliu anautomaticemergencybrakingmodelconsideringdriversintentionrecognitionofthefrontvehicle AT kaixiazhou anautomaticemergencybrakingmodelconsideringdriversintentionrecognitionofthefrontvehicle AT zhiweizhang anautomaticemergencybrakingmodelconsideringdriversintentionrecognitionofthefrontvehicle AT xiaoleiqu anautomaticemergencybrakingmodelconsideringdriversintentionrecognitionofthefrontvehicle AT weiyang automaticemergencybrakingmodelconsideringdriversintentionrecognitionofthefrontvehicle AT jiajunliu automaticemergencybrakingmodelconsideringdriversintentionrecognitionofthefrontvehicle AT kaixiazhou automaticemergencybrakingmodelconsideringdriversintentionrecognitionofthefrontvehicle AT zhiweizhang automaticemergencybrakingmodelconsideringdriversintentionrecognitionofthefrontvehicle AT xiaoleiqu automaticemergencybrakingmodelconsideringdriversintentionrecognitionofthefrontvehicle |
_version_ |
1714988445466624000 |