Vibration mitigation of a bridge cable using a nonlinear energy sink: design and experiment

This work deals with the design and experiment of a cubic nonlinear energy sink (NES) for horizontal vibration mitigation of a bridge cable. Modal analysis of horizontal linear modes of the cable is experimentally performed using accelerometers and displacement sensors. A theoretical simplified 2-do...

Full description

Bibliographic Details
Main Authors: Weiss Mathieu, Vaurigaud Bastien, Savadkoohi Alireza Ture, Lamarque Claude-Henri
Format: Article
Language:English
Published: EDP Sciences 2015-01-01
Series:MATEC Web of Conferences
Online Access:http://dx.doi.org/10.1051/matecconf/20152406007
Description
Summary:This work deals with the design and experiment of a cubic nonlinear energy sink (NES) for horizontal vibration mitigation of a bridge cable. Modal analysis of horizontal linear modes of the cable is experimentally performed using accelerometers and displacement sensors. A theoretical simplified 2-dof model of the coupled cable-NES system is used to analytically design the NES by mean of multi-time scale systems behaviours and detection its invariant manifold, equilibrium and singular points which stand for periodic and strongly modulated regimes, respectively. Numerical integration is used to confirm the efficiency of the designed NES for the system under step release excitation. Then, the prototype system is built using geometrical cubic nonlinearity as the potential of the NES. Efficiency of the prototype system for mitigation of horizontal vibrations of the cable under for step release and forced excitations is experimentally demonstrated.
ISSN:2261-236X