A Network Reconfiguration Method Considering Data Uncertainties in Smart Distribution Networks

This work presents a method for distribution network reconfiguration with the simultaneous consideration of distributed generation (DG) allocation. The uncertainties of load fluctuation before the network reconfiguration are also considered. Three optimal objectives, including minimal line loss cost...

Full description

Bibliographic Details
Main Authors: Ke-yan Liu, Wanxing Sheng, Yongmei Liu, Xiaoli Meng
Format: Article
Language:English
Published: MDPI AG 2017-05-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/10/5/618
Description
Summary:This work presents a method for distribution network reconfiguration with the simultaneous consideration of distributed generation (DG) allocation. The uncertainties of load fluctuation before the network reconfiguration are also considered. Three optimal objectives, including minimal line loss cost, minimum Expected Energy Not Supplied, and minimum switch operation cost, are investigated. The multi-objective optimization problem is further transformed into a single-objective optimization problem by utilizing weighting factors. The proposed network reconfiguration method includes two periods. The first period is to create a feasible topology network by using binary particle swarm optimization (BPSO). Then the DG allocation problem is solved by utilizing sensitivity analysis and a Harmony Search algorithm (HSA). In the meanwhile, interval analysis is applied to deal with the uncertainties of load and devices parameters. Test cases are studied using the standard IEEE 33-bus and PG&E 69-bus systems. Different scenarios and comparisons are analyzed in the experiments. The results show the applicability of the proposed method. The performance analysis of the proposed method is also investigated. The computational results indicate that the proposed network reconfiguration algorithm is feasible.
ISSN:1996-1073