Plasmidome interchange between Clostridium botulinum, Clostridium novyi and Clostridium haemolyticum converts strains of independent lineages into distinctly different pathogens.

Clostridium botulinum (group III), Clostridium novyi and Clostridium haemolyticum are well-known pathogens causing animal botulism, gas gangrene/black disease, and bacillary hemoglobinuria, respectively. A close genetic relationship exists between the species, which has resulted in the collective te...

Full description

Bibliographic Details
Main Authors: Hanna Skarin, Bo Segerman
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4177856?pdf=render
id doaj-220b5b5f6fae461c9f723459fdd71428
record_format Article
spelling doaj-220b5b5f6fae461c9f723459fdd714282020-11-25T02:11:57ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-0199e10777710.1371/journal.pone.0107777Plasmidome interchange between Clostridium botulinum, Clostridium novyi and Clostridium haemolyticum converts strains of independent lineages into distinctly different pathogens.Hanna SkarinBo SegermanClostridium botulinum (group III), Clostridium novyi and Clostridium haemolyticum are well-known pathogens causing animal botulism, gas gangrene/black disease, and bacillary hemoglobinuria, respectively. A close genetic relationship exists between the species, which has resulted in the collective term C. novyi sensu lato. The pathogenic traits in these species, e.g., the botulinum neurotoxin and the novyi alpha toxin, are mainly linked to a large plasmidome consisting of plasmids and circular prophages. The plasmidome of C. novyi sensu lato has so far been poorly characterized. In this study we explored the genomic relationship of a wide range of strains of C. novyi sensu lato with a special focus on the dynamics of the plasmidome. Twenty-four genomes were sequenced from strains selected to represent as much as possible the genetic diversity in C. novyi sensu lato. Sixty-one plasmids were identified in these genomes and 28 of them were completed. The genomic comparisons revealed four separate lineages, which did not strictly correlate with the species designations. The plasmids were categorized into 13 different plasmid groups on the basis of their similarity and conservation of plasmid replication or partitioning genes. The plasmid groups, lineages and species were to a large extent entwined because plasmids and toxin genes had moved across the lineage boundaries. This dynamic process appears to be primarily driven by phages. We here present a comprehensive characterization of the complex species group C. novyi sensu lato, explaining the intermixed genetic properties. This study also provides examples how the reorganization of the botulinum toxin and the novyi alpha toxin genes within the plasmidome has affected the pathogenesis of the strains.http://europepmc.org/articles/PMC4177856?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Hanna Skarin
Bo Segerman
spellingShingle Hanna Skarin
Bo Segerman
Plasmidome interchange between Clostridium botulinum, Clostridium novyi and Clostridium haemolyticum converts strains of independent lineages into distinctly different pathogens.
PLoS ONE
author_facet Hanna Skarin
Bo Segerman
author_sort Hanna Skarin
title Plasmidome interchange between Clostridium botulinum, Clostridium novyi and Clostridium haemolyticum converts strains of independent lineages into distinctly different pathogens.
title_short Plasmidome interchange between Clostridium botulinum, Clostridium novyi and Clostridium haemolyticum converts strains of independent lineages into distinctly different pathogens.
title_full Plasmidome interchange between Clostridium botulinum, Clostridium novyi and Clostridium haemolyticum converts strains of independent lineages into distinctly different pathogens.
title_fullStr Plasmidome interchange between Clostridium botulinum, Clostridium novyi and Clostridium haemolyticum converts strains of independent lineages into distinctly different pathogens.
title_full_unstemmed Plasmidome interchange between Clostridium botulinum, Clostridium novyi and Clostridium haemolyticum converts strains of independent lineages into distinctly different pathogens.
title_sort plasmidome interchange between clostridium botulinum, clostridium novyi and clostridium haemolyticum converts strains of independent lineages into distinctly different pathogens.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2014-01-01
description Clostridium botulinum (group III), Clostridium novyi and Clostridium haemolyticum are well-known pathogens causing animal botulism, gas gangrene/black disease, and bacillary hemoglobinuria, respectively. A close genetic relationship exists between the species, which has resulted in the collective term C. novyi sensu lato. The pathogenic traits in these species, e.g., the botulinum neurotoxin and the novyi alpha toxin, are mainly linked to a large plasmidome consisting of plasmids and circular prophages. The plasmidome of C. novyi sensu lato has so far been poorly characterized. In this study we explored the genomic relationship of a wide range of strains of C. novyi sensu lato with a special focus on the dynamics of the plasmidome. Twenty-four genomes were sequenced from strains selected to represent as much as possible the genetic diversity in C. novyi sensu lato. Sixty-one plasmids were identified in these genomes and 28 of them were completed. The genomic comparisons revealed four separate lineages, which did not strictly correlate with the species designations. The plasmids were categorized into 13 different plasmid groups on the basis of their similarity and conservation of plasmid replication or partitioning genes. The plasmid groups, lineages and species were to a large extent entwined because plasmids and toxin genes had moved across the lineage boundaries. This dynamic process appears to be primarily driven by phages. We here present a comprehensive characterization of the complex species group C. novyi sensu lato, explaining the intermixed genetic properties. This study also provides examples how the reorganization of the botulinum toxin and the novyi alpha toxin genes within the plasmidome has affected the pathogenesis of the strains.
url http://europepmc.org/articles/PMC4177856?pdf=render
work_keys_str_mv AT hannaskarin plasmidomeinterchangebetweenclostridiumbotulinumclostridiumnovyiandclostridiumhaemolyticumconvertsstrainsofindependentlineagesintodistinctlydifferentpathogens
AT bosegerman plasmidomeinterchangebetweenclostridiumbotulinumclostridiumnovyiandclostridiumhaemolyticumconvertsstrainsofindependentlineagesintodistinctlydifferentpathogens
_version_ 1724911645727129600