Electronic materials with a wide band gap: recent developments

The development of semiconductor electronics is reviewed briefly, beginning with the development of germanium devices (band gap Eg = 0.66 eV) after World War II. A tendency towards alternative materials with wider band gaps quickly became apparent, starting with silicon (Eg = 1.12 eV). This improved...

Full description

Bibliographic Details
Main Author: Detlef Klimm
Format: Article
Language:English
Published: International Union of Crystallography 2014-09-01
Series:IUCrJ
Subjects:
Online Access:http://scripts.iucr.org/cgi-bin/paper?S2052252514017229
Description
Summary:The development of semiconductor electronics is reviewed briefly, beginning with the development of germanium devices (band gap Eg = 0.66 eV) after World War II. A tendency towards alternative materials with wider band gaps quickly became apparent, starting with silicon (Eg = 1.12 eV). This improved the signal-to-noise ratio for classical electronic applications. Both semiconductors have a tetrahedral coordination, and by isoelectronic alternative replacement of Ge or Si with carbon or various anions and cations, other semiconductors with wider Eg were obtained. These are transparent to visible light and belong to the group of wide band gap semiconductors. Nowadays, some nitrides, especially GaN and AlN, are the most important materials for optical emission in the ultraviolet and blue regions. Oxide crystals, such as ZnO and β-Ga2O3, offer similarly good electronic properties but still suffer from significant difficulties in obtaining stable and technologically adequate p-type conductivity.
ISSN:2052-2525