Summary: | As a result of experimental and theoretical studies, the patterns of behavior of rocks in a condition close to destructive are the focal nature of the preparation of macrocracking, which allowed us to include the mesocrack structure of the material, which is the main element in the preparation of macrocracking. Differences in this new approach to mathematical modeling will let adequately describe dissipative mesocrack structures of various hierarchical levels of geodesy, predict dynamic changes, structures and mechanical properties of both rock samples and massif, which also lead to resource-intensive experimental studies. In this paper, with usage of the methods of cluster, factor, and statistical analysis, we set the task of processing the data of experimental studies of the laws of deformation and preparing macro-fracture of rock samples by various methods, including acoustic and deformation observations.
|