Diversity and distribution of microbial communities in floral nectar of two night-blooming plants of the Sonoran Desert.
Nectar-inhabiting microbes are increasingly appreciated as important components of plant-pollinator interactions. We quantified the incidence, abundance, diversity, and composition of bacterial and fungal communities in floral nectar of two night-blooming plants of the Sonoran Desert over the course...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2019-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0225309 |
id |
doaj-21cdd466a4a948ada3a312e48ae449ab |
---|---|
record_format |
Article |
spelling |
doaj-21cdd466a4a948ada3a312e48ae449ab2021-03-03T21:16:07ZengPublic Library of Science (PLoS)PLoS ONE1932-62032019-01-011412e022530910.1371/journal.pone.0225309Diversity and distribution of microbial communities in floral nectar of two night-blooming plants of the Sonoran Desert.Martin von ArxAutumn MooreGoggy DavidowitzA Elizabeth ArnoldNectar-inhabiting microbes are increasingly appreciated as important components of plant-pollinator interactions. We quantified the incidence, abundance, diversity, and composition of bacterial and fungal communities in floral nectar of two night-blooming plants of the Sonoran Desert over the course of a flowering season: Datura wrightii (Solanaceae), which is pollinated by hawkmoths, and Agave palmeri (Agavaceae), which is pollinated by bats but visited by hawkmoths that forage for nectar. We examined the relevance of growing environment (greenhouse vs. field), time (before and after anthesis), season (from early to late in the flowering season), and flower visitors (excluded via mesh sleeves or allowed to visit flowers naturally) in shaping microbial assemblages in nectar. We isolated and identified bacteria and fungi from >300 nectar samples to estimate richness and taxonomic composition. Our results show that microbes were common in D. wrightii and A. palmeri nectar in the greenhouse but more so in field environments, both before and especially after anthesis. Bacteria were isolated more frequently than fungi. The abundance of microbes in nectar of D. wrightii peaked near the middle of the flowering season. Microbes generally were more abundant as time for floral visitation increased. The composition of bacterial and especially fungal communities differed significantly between nectars of D. wrightii and A. palmeri, opening the door to future studies examining their functional roles in shaping nectar chemistry, attractiveness, and pollinator specialization.https://doi.org/10.1371/journal.pone.0225309 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Martin von Arx Autumn Moore Goggy Davidowitz A Elizabeth Arnold |
spellingShingle |
Martin von Arx Autumn Moore Goggy Davidowitz A Elizabeth Arnold Diversity and distribution of microbial communities in floral nectar of two night-blooming plants of the Sonoran Desert. PLoS ONE |
author_facet |
Martin von Arx Autumn Moore Goggy Davidowitz A Elizabeth Arnold |
author_sort |
Martin von Arx |
title |
Diversity and distribution of microbial communities in floral nectar of two night-blooming plants of the Sonoran Desert. |
title_short |
Diversity and distribution of microbial communities in floral nectar of two night-blooming plants of the Sonoran Desert. |
title_full |
Diversity and distribution of microbial communities in floral nectar of two night-blooming plants of the Sonoran Desert. |
title_fullStr |
Diversity and distribution of microbial communities in floral nectar of two night-blooming plants of the Sonoran Desert. |
title_full_unstemmed |
Diversity and distribution of microbial communities in floral nectar of two night-blooming plants of the Sonoran Desert. |
title_sort |
diversity and distribution of microbial communities in floral nectar of two night-blooming plants of the sonoran desert. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2019-01-01 |
description |
Nectar-inhabiting microbes are increasingly appreciated as important components of plant-pollinator interactions. We quantified the incidence, abundance, diversity, and composition of bacterial and fungal communities in floral nectar of two night-blooming plants of the Sonoran Desert over the course of a flowering season: Datura wrightii (Solanaceae), which is pollinated by hawkmoths, and Agave palmeri (Agavaceae), which is pollinated by bats but visited by hawkmoths that forage for nectar. We examined the relevance of growing environment (greenhouse vs. field), time (before and after anthesis), season (from early to late in the flowering season), and flower visitors (excluded via mesh sleeves or allowed to visit flowers naturally) in shaping microbial assemblages in nectar. We isolated and identified bacteria and fungi from >300 nectar samples to estimate richness and taxonomic composition. Our results show that microbes were common in D. wrightii and A. palmeri nectar in the greenhouse but more so in field environments, both before and especially after anthesis. Bacteria were isolated more frequently than fungi. The abundance of microbes in nectar of D. wrightii peaked near the middle of the flowering season. Microbes generally were more abundant as time for floral visitation increased. The composition of bacterial and especially fungal communities differed significantly between nectars of D. wrightii and A. palmeri, opening the door to future studies examining their functional roles in shaping nectar chemistry, attractiveness, and pollinator specialization. |
url |
https://doi.org/10.1371/journal.pone.0225309 |
work_keys_str_mv |
AT martinvonarx diversityanddistributionofmicrobialcommunitiesinfloralnectaroftwonightbloomingplantsofthesonorandesert AT autumnmoore diversityanddistributionofmicrobialcommunitiesinfloralnectaroftwonightbloomingplantsofthesonorandesert AT goggydavidowitz diversityanddistributionofmicrobialcommunitiesinfloralnectaroftwonightbloomingplantsofthesonorandesert AT aelizabetharnold diversityanddistributionofmicrobialcommunitiesinfloralnectaroftwonightbloomingplantsofthesonorandesert |
_version_ |
1714817792819068928 |