Recomendación de productos a partir de perfiles de usuario interpretables

Recommender systems allow users to have a personalized view of large sets of products, relieving the overload problem of choice in e-commerce sites. Usually, recommendations are obtained using the technique called "collaborative filtering". This technique filters the products the users wis...

Full description

Bibliographic Details
Main Authors: Claudia Jeanneth Becerra Cortes, Sergio Gonzalo Jiménez Vargas, Fabio Augusto González Osorio, Alexander Gelbukh
Format: Article
Language:Spanish
Published: Universidad Distrital Francisco Jose de Caldas 2015-07-01
Series:Tecnura
Subjects:
Online Access:http://revistas.udistrital.edu.co/ojs/index.php/Tecnura/article/view/9018/10375
id doaj-21c7b66dcfda4a38aa64957fc291146a
record_format Article
spelling doaj-21c7b66dcfda4a38aa64957fc291146a2020-11-24T23:23:58ZspaUniversidad Distrital Francisco Jose de CaldasTecnura0123-921X2248-76382015-07-01194589100http://dx.doi.org/10.14483/udistrital.jour.tecnura.2015.3.a07Recomendación de productos a partir de perfiles de usuario interpretablesClaudia Jeanneth Becerra Cortes0Sergio Gonzalo Jiménez Vargas1Fabio Augusto González Osorio2Alexander Gelbukh3Universidad Nacional de ColombiaUniversidad Nacional de ColombiaUniversidad Nacional de ColombiaInstituto Politécnico Nacional de MéxicoRecommender systems allow users to have a personalized view of large sets of products, relieving the overload problem of choice in e-commerce sites. Usually, recommendations are obtained using the technique called "collaborative filtering". This technique filters the products the users wish, from those they don´t want, inferring affinities between products and users in a space of abstract features, also called a latent space. These techniques have proven to be of great predictive value, but these created profiles are neither understandable, nor editable for users, enclosing users in a bubble, in which they only receive collaborative recommendations conditioned by their historical behaviors. In our work we propose a method to build user profiles, defined in interpretable spaces, or defined in terms of collaborative tags or keywords (i.e. words extracted from the descriptions of the product), which can be interpreted and modified by users. The model proposed generate linear profiles, whose coefficients, positives or negatives, reflect the user's affinity towards tags or keywords, according to the space selected. To test our hypothesis, we used the dataset of research in movie recommender systems from the University of Minnesota: Movielens. The results show that the predictive ability of the model, based on interpretable user profiles, is comparable to those models based on abstract profiles with the added benefit that these profiles are interpretable.http://revistas.udistrital.edu.co/ojs/index.php/Tecnura/article/view/9018/10375Collaborative filteringcollaborative tagging systemsrecommender systemssocial tagginguser interfaces
collection DOAJ
language Spanish
format Article
sources DOAJ
author Claudia Jeanneth Becerra Cortes
Sergio Gonzalo Jiménez Vargas
Fabio Augusto González Osorio
Alexander Gelbukh
spellingShingle Claudia Jeanneth Becerra Cortes
Sergio Gonzalo Jiménez Vargas
Fabio Augusto González Osorio
Alexander Gelbukh
Recomendación de productos a partir de perfiles de usuario interpretables
Tecnura
Collaborative filtering
collaborative tagging systems
recommender systems
social tagging
user interfaces
author_facet Claudia Jeanneth Becerra Cortes
Sergio Gonzalo Jiménez Vargas
Fabio Augusto González Osorio
Alexander Gelbukh
author_sort Claudia Jeanneth Becerra Cortes
title Recomendación de productos a partir de perfiles de usuario interpretables
title_short Recomendación de productos a partir de perfiles de usuario interpretables
title_full Recomendación de productos a partir de perfiles de usuario interpretables
title_fullStr Recomendación de productos a partir de perfiles de usuario interpretables
title_full_unstemmed Recomendación de productos a partir de perfiles de usuario interpretables
title_sort recomendación de productos a partir de perfiles de usuario interpretables
publisher Universidad Distrital Francisco Jose de Caldas
series Tecnura
issn 0123-921X
2248-7638
publishDate 2015-07-01
description Recommender systems allow users to have a personalized view of large sets of products, relieving the overload problem of choice in e-commerce sites. Usually, recommendations are obtained using the technique called "collaborative filtering". This technique filters the products the users wish, from those they don´t want, inferring affinities between products and users in a space of abstract features, also called a latent space. These techniques have proven to be of great predictive value, but these created profiles are neither understandable, nor editable for users, enclosing users in a bubble, in which they only receive collaborative recommendations conditioned by their historical behaviors. In our work we propose a method to build user profiles, defined in interpretable spaces, or defined in terms of collaborative tags or keywords (i.e. words extracted from the descriptions of the product), which can be interpreted and modified by users. The model proposed generate linear profiles, whose coefficients, positives or negatives, reflect the user's affinity towards tags or keywords, according to the space selected. To test our hypothesis, we used the dataset of research in movie recommender systems from the University of Minnesota: Movielens. The results show that the predictive ability of the model, based on interpretable user profiles, is comparable to those models based on abstract profiles with the added benefit that these profiles are interpretable.
topic Collaborative filtering
collaborative tagging systems
recommender systems
social tagging
user interfaces
url http://revistas.udistrital.edu.co/ojs/index.php/Tecnura/article/view/9018/10375
work_keys_str_mv AT claudiajeannethbecerracortes recomendaciondeproductosapartirdeperfilesdeusuariointerpretables
AT sergiogonzalojimenezvargas recomendaciondeproductosapartirdeperfilesdeusuariointerpretables
AT fabioaugustogonzalezosorio recomendaciondeproductosapartirdeperfilesdeusuariointerpretables
AT alexandergelbukh recomendaciondeproductosapartirdeperfilesdeusuariointerpretables
_version_ 1725562563902570496