Recomendación de productos a partir de perfiles de usuario interpretables
Recommender systems allow users to have a personalized view of large sets of products, relieving the overload problem of choice in e-commerce sites. Usually, recommendations are obtained using the technique called "collaborative filtering". This technique filters the products the users wis...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | Spanish |
Published: |
Universidad Distrital Francisco Jose de Caldas
2015-07-01
|
Series: | Tecnura |
Subjects: | |
Online Access: | http://revistas.udistrital.edu.co/ojs/index.php/Tecnura/article/view/9018/10375 |
id |
doaj-21c7b66dcfda4a38aa64957fc291146a |
---|---|
record_format |
Article |
spelling |
doaj-21c7b66dcfda4a38aa64957fc291146a2020-11-24T23:23:58ZspaUniversidad Distrital Francisco Jose de CaldasTecnura0123-921X2248-76382015-07-01194589100http://dx.doi.org/10.14483/udistrital.jour.tecnura.2015.3.a07Recomendación de productos a partir de perfiles de usuario interpretablesClaudia Jeanneth Becerra Cortes0Sergio Gonzalo Jiménez Vargas1Fabio Augusto González Osorio2Alexander Gelbukh3Universidad Nacional de ColombiaUniversidad Nacional de ColombiaUniversidad Nacional de ColombiaInstituto Politécnico Nacional de MéxicoRecommender systems allow users to have a personalized view of large sets of products, relieving the overload problem of choice in e-commerce sites. Usually, recommendations are obtained using the technique called "collaborative filtering". This technique filters the products the users wish, from those they don´t want, inferring affinities between products and users in a space of abstract features, also called a latent space. These techniques have proven to be of great predictive value, but these created profiles are neither understandable, nor editable for users, enclosing users in a bubble, in which they only receive collaborative recommendations conditioned by their historical behaviors. In our work we propose a method to build user profiles, defined in interpretable spaces, or defined in terms of collaborative tags or keywords (i.e. words extracted from the descriptions of the product), which can be interpreted and modified by users. The model proposed generate linear profiles, whose coefficients, positives or negatives, reflect the user's affinity towards tags or keywords, according to the space selected. To test our hypothesis, we used the dataset of research in movie recommender systems from the University of Minnesota: Movielens. The results show that the predictive ability of the model, based on interpretable user profiles, is comparable to those models based on abstract profiles with the added benefit that these profiles are interpretable.http://revistas.udistrital.edu.co/ojs/index.php/Tecnura/article/view/9018/10375Collaborative filteringcollaborative tagging systemsrecommender systemssocial tagginguser interfaces |
collection |
DOAJ |
language |
Spanish |
format |
Article |
sources |
DOAJ |
author |
Claudia Jeanneth Becerra Cortes Sergio Gonzalo Jiménez Vargas Fabio Augusto González Osorio Alexander Gelbukh |
spellingShingle |
Claudia Jeanneth Becerra Cortes Sergio Gonzalo Jiménez Vargas Fabio Augusto González Osorio Alexander Gelbukh Recomendación de productos a partir de perfiles de usuario interpretables Tecnura Collaborative filtering collaborative tagging systems recommender systems social tagging user interfaces |
author_facet |
Claudia Jeanneth Becerra Cortes Sergio Gonzalo Jiménez Vargas Fabio Augusto González Osorio Alexander Gelbukh |
author_sort |
Claudia Jeanneth Becerra Cortes |
title |
Recomendación de productos a partir de perfiles de usuario interpretables |
title_short |
Recomendación de productos a partir de perfiles de usuario interpretables |
title_full |
Recomendación de productos a partir de perfiles de usuario interpretables |
title_fullStr |
Recomendación de productos a partir de perfiles de usuario interpretables |
title_full_unstemmed |
Recomendación de productos a partir de perfiles de usuario interpretables |
title_sort |
recomendación de productos a partir de perfiles de usuario interpretables |
publisher |
Universidad Distrital Francisco Jose de Caldas |
series |
Tecnura |
issn |
0123-921X 2248-7638 |
publishDate |
2015-07-01 |
description |
Recommender systems allow users to have a personalized view of large sets of products, relieving the overload problem of choice in e-commerce sites. Usually, recommendations are obtained using the technique called "collaborative filtering". This technique filters the products the users wish, from those they don´t want, inferring affinities between products and users in a space of abstract features, also called a latent space. These techniques have proven to be of great predictive value, but these created profiles are neither understandable, nor editable for users, enclosing users in a bubble, in which they only receive collaborative recommendations conditioned by their historical behaviors. In our work we propose a method to build user profiles, defined in interpretable spaces, or defined in terms of collaborative tags or keywords (i.e. words extracted from the descriptions of the product), which can be interpreted and modified by users. The model proposed generate linear profiles, whose coefficients, positives or negatives, reflect the user's affinity towards tags or keywords, according to the space selected. To test our hypothesis, we used the dataset of research in movie recommender systems from the University of Minnesota: Movielens. The results show that the predictive ability of the model, based on interpretable user profiles, is comparable to those models based on abstract profiles with the added benefit that these profiles are interpretable. |
topic |
Collaborative filtering collaborative tagging systems recommender systems social tagging user interfaces |
url |
http://revistas.udistrital.edu.co/ojs/index.php/Tecnura/article/view/9018/10375 |
work_keys_str_mv |
AT claudiajeannethbecerracortes recomendaciondeproductosapartirdeperfilesdeusuariointerpretables AT sergiogonzalojimenezvargas recomendaciondeproductosapartirdeperfilesdeusuariointerpretables AT fabioaugustogonzalezosorio recomendaciondeproductosapartirdeperfilesdeusuariointerpretables AT alexandergelbukh recomendaciondeproductosapartirdeperfilesdeusuariointerpretables |
_version_ |
1725562563902570496 |