On random coincidence and fixed points for a pair of multivalued and single-valued mappings
<p/> <p>Let ( <inline-formula><graphic file="1029-242X-2006-81045-i1.gif"/></inline-formula>) be a Polish space, <inline-formula><graphic file="1029-242X-2006-81045-i2.gif"/></inline-formula> the family of all nonempty closed and bo...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2006-01-01
|
Series: | Journal of Inequalities and Applications |
Online Access: | http://www.journalofinequalitiesandapplications.com/content/2006/81045 |
id |
doaj-21c54a643a0842328559c3b267e70383 |
---|---|
record_format |
Article |
spelling |
doaj-21c54a643a0842328559c3b267e703832020-11-25T01:26:48ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2006-01-012006181045On random coincidence and fixed points for a pair of multivalued and single-valued mappingsUme Jeong SJešić Siniša NĆirić Ljubomir B<p/> <p>Let ( <inline-formula><graphic file="1029-242X-2006-81045-i1.gif"/></inline-formula>) be a Polish space, <inline-formula><graphic file="1029-242X-2006-81045-i2.gif"/></inline-formula> the family of all nonempty closed and bounded subsets of <inline-formula><graphic file="1029-242X-2006-81045-i3.gif"/></inline-formula>, and ( <inline-formula><graphic file="1029-242X-2006-81045-i4.gif"/></inline-formula>) a measurable space. A pair of a hybrid measurable mappings <inline-formula><graphic file="1029-242X-2006-81045-i5.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2006-81045-i6.gif"/></inline-formula>, satisfying the inequality (1.2), are introduced and investigated. It is proved that if <inline-formula><graphic file="1029-242X-2006-81045-i7.gif"/></inline-formula> is complete, <inline-formula><graphic file="1029-242X-2006-81045-i8.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-2006-81045-i9.gif"/></inline-formula> are continuous for all <inline-formula><graphic file="1029-242X-2006-81045-i10.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-2006-81045-i11.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-2006-81045-i12.gif"/></inline-formula> are measurable for all <inline-formula><graphic file="1029-242X-2006-81045-i13.gif"/></inline-formula>, and <inline-formula><graphic file="1029-242X-2006-81045-i14.gif"/></inline-formula> for each <inline-formula><graphic file="1029-242X-2006-81045-i15.gif"/></inline-formula>, then there is a measurable mapping <inline-formula><graphic file="1029-242X-2006-81045-i16.gif"/></inline-formula> such that <inline-formula><graphic file="1029-242X-2006-81045-i17.gif"/></inline-formula> for all <inline-formula><graphic file="1029-242X-2006-81045-i18.gif"/></inline-formula>. This result generalizes and extends the fixed point theorem of Papageorgiou (1984) and many classical fixed point theorems.</p>http://www.journalofinequalitiesandapplications.com/content/2006/81045 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ume Jeong S Ješić Siniša N Ćirić Ljubomir B |
spellingShingle |
Ume Jeong S Ješić Siniša N Ćirić Ljubomir B On random coincidence and fixed points for a pair of multivalued and single-valued mappings Journal of Inequalities and Applications |
author_facet |
Ume Jeong S Ješić Siniša N Ćirić Ljubomir B |
author_sort |
Ume Jeong S |
title |
On random coincidence and fixed points for a pair of multivalued and single-valued mappings |
title_short |
On random coincidence and fixed points for a pair of multivalued and single-valued mappings |
title_full |
On random coincidence and fixed points for a pair of multivalued and single-valued mappings |
title_fullStr |
On random coincidence and fixed points for a pair of multivalued and single-valued mappings |
title_full_unstemmed |
On random coincidence and fixed points for a pair of multivalued and single-valued mappings |
title_sort |
on random coincidence and fixed points for a pair of multivalued and single-valued mappings |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1025-5834 1029-242X |
publishDate |
2006-01-01 |
description |
<p/> <p>Let ( <inline-formula><graphic file="1029-242X-2006-81045-i1.gif"/></inline-formula>) be a Polish space, <inline-formula><graphic file="1029-242X-2006-81045-i2.gif"/></inline-formula> the family of all nonempty closed and bounded subsets of <inline-formula><graphic file="1029-242X-2006-81045-i3.gif"/></inline-formula>, and ( <inline-formula><graphic file="1029-242X-2006-81045-i4.gif"/></inline-formula>) a measurable space. A pair of a hybrid measurable mappings <inline-formula><graphic file="1029-242X-2006-81045-i5.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2006-81045-i6.gif"/></inline-formula>, satisfying the inequality (1.2), are introduced and investigated. It is proved that if <inline-formula><graphic file="1029-242X-2006-81045-i7.gif"/></inline-formula> is complete, <inline-formula><graphic file="1029-242X-2006-81045-i8.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-2006-81045-i9.gif"/></inline-formula> are continuous for all <inline-formula><graphic file="1029-242X-2006-81045-i10.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-2006-81045-i11.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-2006-81045-i12.gif"/></inline-formula> are measurable for all <inline-formula><graphic file="1029-242X-2006-81045-i13.gif"/></inline-formula>, and <inline-formula><graphic file="1029-242X-2006-81045-i14.gif"/></inline-formula> for each <inline-formula><graphic file="1029-242X-2006-81045-i15.gif"/></inline-formula>, then there is a measurable mapping <inline-formula><graphic file="1029-242X-2006-81045-i16.gif"/></inline-formula> such that <inline-formula><graphic file="1029-242X-2006-81045-i17.gif"/></inline-formula> for all <inline-formula><graphic file="1029-242X-2006-81045-i18.gif"/></inline-formula>. This result generalizes and extends the fixed point theorem of Papageorgiou (1984) and many classical fixed point theorems.</p> |
url |
http://www.journalofinequalitiesandapplications.com/content/2006/81045 |
work_keys_str_mv |
AT umejeongs onrandomcoincidenceandfixedpointsforapairofmultivaluedandsinglevaluedmappings AT je353i263sini353an onrandomcoincidenceandfixedpointsforapairofmultivaluedandsinglevaluedmappings AT 262iri263ljubomirb onrandomcoincidenceandfixedpointsforapairofmultivaluedandsinglevaluedmappings |
_version_ |
1725108973335478272 |