On random coincidence and fixed points for a pair of multivalued and single-valued mappings

<p/> <p>Let ( <inline-formula><graphic file="1029-242X-2006-81045-i1.gif"/></inline-formula>) be a Polish space, <inline-formula><graphic file="1029-242X-2006-81045-i2.gif"/></inline-formula> the family of all nonempty closed and bo...

Full description

Bibliographic Details
Main Authors: Ume Jeong S, Je&#353;i&#263; Sini&#353;a N, &#262;iri&#263; Ljubomir B
Format: Article
Language:English
Published: SpringerOpen 2006-01-01
Series:Journal of Inequalities and Applications
Online Access:http://www.journalofinequalitiesandapplications.com/content/2006/81045
id doaj-21c54a643a0842328559c3b267e70383
record_format Article
spelling doaj-21c54a643a0842328559c3b267e703832020-11-25T01:26:48ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2006-01-012006181045On random coincidence and fixed points for a pair of multivalued and single-valued mappingsUme Jeong SJe&#353;i&#263; Sini&#353;a N&#262;iri&#263; Ljubomir B<p/> <p>Let ( <inline-formula><graphic file="1029-242X-2006-81045-i1.gif"/></inline-formula>) be a Polish space, <inline-formula><graphic file="1029-242X-2006-81045-i2.gif"/></inline-formula> the family of all nonempty closed and bounded subsets of <inline-formula><graphic file="1029-242X-2006-81045-i3.gif"/></inline-formula>, and ( <inline-formula><graphic file="1029-242X-2006-81045-i4.gif"/></inline-formula>) a measurable space. A pair of a hybrid measurable mappings <inline-formula><graphic file="1029-242X-2006-81045-i5.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2006-81045-i6.gif"/></inline-formula>, satisfying the inequality (1.2), are introduced and investigated. It is proved that if <inline-formula><graphic file="1029-242X-2006-81045-i7.gif"/></inline-formula> is complete, <inline-formula><graphic file="1029-242X-2006-81045-i8.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-2006-81045-i9.gif"/></inline-formula> are continuous for all <inline-formula><graphic file="1029-242X-2006-81045-i10.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-2006-81045-i11.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-2006-81045-i12.gif"/></inline-formula> are measurable for all <inline-formula><graphic file="1029-242X-2006-81045-i13.gif"/></inline-formula>, and <inline-formula><graphic file="1029-242X-2006-81045-i14.gif"/></inline-formula> for each <inline-formula><graphic file="1029-242X-2006-81045-i15.gif"/></inline-formula>, then there is a measurable mapping <inline-formula><graphic file="1029-242X-2006-81045-i16.gif"/></inline-formula> such that <inline-formula><graphic file="1029-242X-2006-81045-i17.gif"/></inline-formula> for all <inline-formula><graphic file="1029-242X-2006-81045-i18.gif"/></inline-formula>. This result generalizes and extends the fixed point theorem of Papageorgiou (1984) and many classical fixed point theorems.</p>http://www.journalofinequalitiesandapplications.com/content/2006/81045
collection DOAJ
language English
format Article
sources DOAJ
author Ume Jeong S
Je&#353;i&#263; Sini&#353;a N
&#262;iri&#263; Ljubomir B
spellingShingle Ume Jeong S
Je&#353;i&#263; Sini&#353;a N
&#262;iri&#263; Ljubomir B
On random coincidence and fixed points for a pair of multivalued and single-valued mappings
Journal of Inequalities and Applications
author_facet Ume Jeong S
Je&#353;i&#263; Sini&#353;a N
&#262;iri&#263; Ljubomir B
author_sort Ume Jeong S
title On random coincidence and fixed points for a pair of multivalued and single-valued mappings
title_short On random coincidence and fixed points for a pair of multivalued and single-valued mappings
title_full On random coincidence and fixed points for a pair of multivalued and single-valued mappings
title_fullStr On random coincidence and fixed points for a pair of multivalued and single-valued mappings
title_full_unstemmed On random coincidence and fixed points for a pair of multivalued and single-valued mappings
title_sort on random coincidence and fixed points for a pair of multivalued and single-valued mappings
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1025-5834
1029-242X
publishDate 2006-01-01
description <p/> <p>Let ( <inline-formula><graphic file="1029-242X-2006-81045-i1.gif"/></inline-formula>) be a Polish space, <inline-formula><graphic file="1029-242X-2006-81045-i2.gif"/></inline-formula> the family of all nonempty closed and bounded subsets of <inline-formula><graphic file="1029-242X-2006-81045-i3.gif"/></inline-formula>, and ( <inline-formula><graphic file="1029-242X-2006-81045-i4.gif"/></inline-formula>) a measurable space. A pair of a hybrid measurable mappings <inline-formula><graphic file="1029-242X-2006-81045-i5.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2006-81045-i6.gif"/></inline-formula>, satisfying the inequality (1.2), are introduced and investigated. It is proved that if <inline-formula><graphic file="1029-242X-2006-81045-i7.gif"/></inline-formula> is complete, <inline-formula><graphic file="1029-242X-2006-81045-i8.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-2006-81045-i9.gif"/></inline-formula> are continuous for all <inline-formula><graphic file="1029-242X-2006-81045-i10.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-2006-81045-i11.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-2006-81045-i12.gif"/></inline-formula> are measurable for all <inline-formula><graphic file="1029-242X-2006-81045-i13.gif"/></inline-formula>, and <inline-formula><graphic file="1029-242X-2006-81045-i14.gif"/></inline-formula> for each <inline-formula><graphic file="1029-242X-2006-81045-i15.gif"/></inline-formula>, then there is a measurable mapping <inline-formula><graphic file="1029-242X-2006-81045-i16.gif"/></inline-formula> such that <inline-formula><graphic file="1029-242X-2006-81045-i17.gif"/></inline-formula> for all <inline-formula><graphic file="1029-242X-2006-81045-i18.gif"/></inline-formula>. This result generalizes and extends the fixed point theorem of Papageorgiou (1984) and many classical fixed point theorems.</p>
url http://www.journalofinequalitiesandapplications.com/content/2006/81045
work_keys_str_mv AT umejeongs onrandomcoincidenceandfixedpointsforapairofmultivaluedandsinglevaluedmappings
AT je353i263sini353an onrandomcoincidenceandfixedpointsforapairofmultivaluedandsinglevaluedmappings
AT 262iri263ljubomirb onrandomcoincidenceandfixedpointsforapairofmultivaluedandsinglevaluedmappings
_version_ 1725108973335478272