BayesFit: A tool for modeling psychophysical data using Bayesian inference
BayesFit is a module for Python that allows users to fit models to psychophysical data using Bayesian inference. The module aims to make it easier to develop probabilistic models for psychophysical data in Python by providing users with a simple API that streamlines the process of defining psychophy...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Ubiquity Press
2019-01-01
|
Series: | Journal of Open Research Software |
Subjects: | |
Online Access: | https://openresearchsoftware.metajnl.com/articles/202 |
id |
doaj-21c49de9e161427a830286ddd2496ae1 |
---|---|
record_format |
Article |
spelling |
doaj-21c49de9e161427a830286ddd2496ae12020-11-24T21:20:51ZengUbiquity PressJournal of Open Research Software2049-96472019-01-017110.5334/jors.202169BayesFit: A tool for modeling psychophysical data using Bayesian inferenceMichael Slugocki0Allison B. Sekuler1Patrick Bennett2McMaster UniversityMcMaster UniversityMcMaster UniversityBayesFit is a module for Python that allows users to fit models to psychophysical data using Bayesian inference. The module aims to make it easier to develop probabilistic models for psychophysical data in Python by providing users with a simple API that streamlines the process of defining psychophysical models, obtaining fits, extracting outputs, and visualizing fitted models. Our software implementation uses numerical integration as the primary tool to fit models, which avoids the complications that arise in using Markov Chain Monte Carlo (MCMC) methods [1]. The source code for BayesFit is available at https://github.com/slugocm/bayesfit and API documentation at http://www.slugocm.ca/bayesfit/. This module is extensible, and many of the functions primarily rely on Numpy [2] and therefore can be reused as newer versions of Python are developed to ensure researchers always have a tool available to ease the process of fitting models to psychophysical data.https://openresearchsoftware.metajnl.com/articles/202PsychophysicsPsychometricsPsychometric functionBayesian inferenceNumerical integrationCurve fittingPython |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Michael Slugocki Allison B. Sekuler Patrick Bennett |
spellingShingle |
Michael Slugocki Allison B. Sekuler Patrick Bennett BayesFit: A tool for modeling psychophysical data using Bayesian inference Journal of Open Research Software Psychophysics Psychometrics Psychometric function Bayesian inference Numerical integration Curve fitting Python |
author_facet |
Michael Slugocki Allison B. Sekuler Patrick Bennett |
author_sort |
Michael Slugocki |
title |
BayesFit: A tool for modeling psychophysical data using Bayesian inference |
title_short |
BayesFit: A tool for modeling psychophysical data using Bayesian inference |
title_full |
BayesFit: A tool for modeling psychophysical data using Bayesian inference |
title_fullStr |
BayesFit: A tool for modeling psychophysical data using Bayesian inference |
title_full_unstemmed |
BayesFit: A tool for modeling psychophysical data using Bayesian inference |
title_sort |
bayesfit: a tool for modeling psychophysical data using bayesian inference |
publisher |
Ubiquity Press |
series |
Journal of Open Research Software |
issn |
2049-9647 |
publishDate |
2019-01-01 |
description |
BayesFit is a module for Python that allows users to fit models to psychophysical data using Bayesian inference. The module aims to make it easier to develop probabilistic models for psychophysical data in Python by providing users with a simple API that streamlines the process of defining psychophysical models, obtaining fits, extracting outputs, and visualizing fitted models. Our software implementation uses numerical integration as the primary tool to fit models, which avoids the complications that arise in using Markov Chain Monte Carlo (MCMC) methods [1]. The source code for BayesFit is available at https://github.com/slugocm/bayesfit and API documentation at http://www.slugocm.ca/bayesfit/. This module is extensible, and many of the functions primarily rely on Numpy [2] and therefore can be reused as newer versions of Python are developed to ensure researchers always have a tool available to ease the process of fitting models to psychophysical data. |
topic |
Psychophysics Psychometrics Psychometric function Bayesian inference Numerical integration Curve fitting Python |
url |
https://openresearchsoftware.metajnl.com/articles/202 |
work_keys_str_mv |
AT michaelslugocki bayesfitatoolformodelingpsychophysicaldatausingbayesianinference AT allisonbsekuler bayesfitatoolformodelingpsychophysicaldatausingbayesianinference AT patrickbennett bayesfitatoolformodelingpsychophysicaldatausingbayesianinference |
_version_ |
1726002581588672512 |