The dynamic nature and territory of transcriptional machinery in the bacterial chromosome
Our knowledge of the regulation of genes involved in bacterial growth and stress responses is extensive; however, we have only recently begun to understand how environmental cues influence the dynamic, three-dimensional distribution of RNA polymerase (RNAP) in Escherichia coli on the level of single...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2015-05-01
|
Series: | Frontiers in Microbiology |
Subjects: | |
Online Access: | http://journal.frontiersin.org/Journal/10.3389/fmicb.2015.00497/full |
id |
doaj-219c495c6c3a426c9e6746c239ec2677 |
---|---|
record_format |
Article |
spelling |
doaj-219c495c6c3a426c9e6746c239ec26772020-11-24T23:04:19ZengFrontiers Media S.A.Frontiers in Microbiology1664-302X2015-05-01610.3389/fmicb.2015.00497140281The dynamic nature and territory of transcriptional machinery in the bacterial chromosomeDing Jun Jin0Cedric eCagliero1Carmen eMata Martin2Jerome eIzard3Yan Ning eZhou4NIH, USANIH, USANIH, USANIH, USANIH, USAOur knowledge of the regulation of genes involved in bacterial growth and stress responses is extensive; however, we have only recently begun to understand how environmental cues influence the dynamic, three-dimensional distribution of RNA polymerase (RNAP) in Escherichia coli on the level of single cell, using wide-field fluorescence microscopy and state-of-the-art imaging techniques. Live-cell imaging using either an agarose-embedding procedure or a microfluidic system further underscores the dynamic nature of the distribution of RNAP in response to changes in the environment. A general agreement between live-cell and fixed-cell images has validated the formaldehyde-fixing procedure, which is a technical breakthrough in the study of the cell biology of RNAP. In this review we use a systems biology perspective to summarize the advances in the cell biology of RNAP in E. coli, including the discoveries of the bacterial nucleolus, the spatial compartmentalization of the transcription machinery at the periphery of the nucleoid, and the segregation of the chromosome territories for the two major cellular functions of transcription and replication in fast-growing cells. Our understanding of the coupling of transcription and bacterial chromosome (or nucleoid) structure is also summarized. Using E. coli as a simple model system, co-imaging of RNAP with DNA and other factors during growth and stress responses will continue to be a useful tool for studying bacterial growth and adaptation in changing environment.http://journal.frontiersin.org/Journal/10.3389/fmicb.2015.00497/fullE. coliRNA polymeraseStress responsesmicrofluidic systemreplisomeBacterial cell biology |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ding Jun Jin Cedric eCagliero Carmen eMata Martin Jerome eIzard Yan Ning eZhou |
spellingShingle |
Ding Jun Jin Cedric eCagliero Carmen eMata Martin Jerome eIzard Yan Ning eZhou The dynamic nature and territory of transcriptional machinery in the bacterial chromosome Frontiers in Microbiology E. coli RNA polymerase Stress responses microfluidic system replisome Bacterial cell biology |
author_facet |
Ding Jun Jin Cedric eCagliero Carmen eMata Martin Jerome eIzard Yan Ning eZhou |
author_sort |
Ding Jun Jin |
title |
The dynamic nature and territory of transcriptional machinery in the bacterial chromosome |
title_short |
The dynamic nature and territory of transcriptional machinery in the bacterial chromosome |
title_full |
The dynamic nature and territory of transcriptional machinery in the bacterial chromosome |
title_fullStr |
The dynamic nature and territory of transcriptional machinery in the bacterial chromosome |
title_full_unstemmed |
The dynamic nature and territory of transcriptional machinery in the bacterial chromosome |
title_sort |
dynamic nature and territory of transcriptional machinery in the bacterial chromosome |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Microbiology |
issn |
1664-302X |
publishDate |
2015-05-01 |
description |
Our knowledge of the regulation of genes involved in bacterial growth and stress responses is extensive; however, we have only recently begun to understand how environmental cues influence the dynamic, three-dimensional distribution of RNA polymerase (RNAP) in Escherichia coli on the level of single cell, using wide-field fluorescence microscopy and state-of-the-art imaging techniques. Live-cell imaging using either an agarose-embedding procedure or a microfluidic system further underscores the dynamic nature of the distribution of RNAP in response to changes in the environment. A general agreement between live-cell and fixed-cell images has validated the formaldehyde-fixing procedure, which is a technical breakthrough in the study of the cell biology of RNAP. In this review we use a systems biology perspective to summarize the advances in the cell biology of RNAP in E. coli, including the discoveries of the bacterial nucleolus, the spatial compartmentalization of the transcription machinery at the periphery of the nucleoid, and the segregation of the chromosome territories for the two major cellular functions of transcription and replication in fast-growing cells. Our understanding of the coupling of transcription and bacterial chromosome (or nucleoid) structure is also summarized. Using E. coli as a simple model system, co-imaging of RNAP with DNA and other factors during growth and stress responses will continue to be a useful tool for studying bacterial growth and adaptation in changing environment. |
topic |
E. coli RNA polymerase Stress responses microfluidic system replisome Bacterial cell biology |
url |
http://journal.frontiersin.org/Journal/10.3389/fmicb.2015.00497/full |
work_keys_str_mv |
AT dingjunjin thedynamicnatureandterritoryoftranscriptionalmachineryinthebacterialchromosome AT cedricecagliero thedynamicnatureandterritoryoftranscriptionalmachineryinthebacterialchromosome AT carmenematamartin thedynamicnatureandterritoryoftranscriptionalmachineryinthebacterialchromosome AT jeromeeizard thedynamicnatureandterritoryoftranscriptionalmachineryinthebacterialchromosome AT yanningezhou thedynamicnatureandterritoryoftranscriptionalmachineryinthebacterialchromosome AT dingjunjin dynamicnatureandterritoryoftranscriptionalmachineryinthebacterialchromosome AT cedricecagliero dynamicnatureandterritoryoftranscriptionalmachineryinthebacterialchromosome AT carmenematamartin dynamicnatureandterritoryoftranscriptionalmachineryinthebacterialchromosome AT jeromeeizard dynamicnatureandterritoryoftranscriptionalmachineryinthebacterialchromosome AT yanningezhou dynamicnatureandterritoryoftranscriptionalmachineryinthebacterialchromosome |
_version_ |
1725631165433380864 |