Three-Dimensional Muscle Architecture and Comprehensive Dynamic Properties of Rabbit Gastrocnemius, Plantaris and Soleus: Input for Simulation Studies.
The vastly increasing number of neuro-muscular simulation studies (with increasing numbers of muscles used per simulation) is in sharp contrast to a narrow database of necessary muscle parameters. Simulation results depend heavily on rough parameter estimates often obtained by scaling of one muscle...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2015-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC4482742?pdf=render |
id |
doaj-219562e846384bd18fd8aaced2fcd341 |
---|---|
record_format |
Article |
spelling |
doaj-219562e846384bd18fd8aaced2fcd3412020-11-24T21:24:28ZengPublic Library of Science (PLoS)PLoS ONE1932-62032015-01-01106e013098510.1371/journal.pone.0130985Three-Dimensional Muscle Architecture and Comprehensive Dynamic Properties of Rabbit Gastrocnemius, Plantaris and Soleus: Input for Simulation Studies.Tobias SiebertKay LeichsenringChristian RodeCarolin WickNorman StutzigHarald SchubertReinhard BlickhanMarkus BölThe vastly increasing number of neuro-muscular simulation studies (with increasing numbers of muscles used per simulation) is in sharp contrast to a narrow database of necessary muscle parameters. Simulation results depend heavily on rough parameter estimates often obtained by scaling of one muscle parameter set. However, in vivo muscles differ in their individual properties and architecture. Here we provide a comprehensive dataset of dynamic (n = 6 per muscle) and geometric (three-dimensional architecture, n = 3 per muscle) muscle properties of the rabbit calf muscles gastrocnemius, plantaris, and soleus. For completeness we provide the dynamic muscle properties for further important shank muscles (flexor digitorum longus, extensor digitorum longus, and tibialis anterior; n = 1 per muscle). Maximum shortening velocity (normalized to optimal fiber length) of the gastrocnemius is about twice that of soleus, while plantaris showed an intermediate value. The force-velocity relation is similar for gastrocnemius and plantaris but is much more bent for the soleus. Although the muscles vary greatly in their three-dimensional architecture their mean pennation angle and normalized force-length relationships are almost similar. Forces of the muscles were enhanced in the isometric phase following stretching and were depressed following shortening compared to the corresponding isometric forces. While the enhancement was independent of the ramp velocity, the depression was inversely related to the ramp velocity. The lowest effect strength for soleus supports the idea that these effects adapt to muscle function. The careful acquisition of typical dynamical parameters (e.g. force-length and force-velocity relations, force elongation relations of passive components), enhancement and depression effects, and 3D muscle architecture of calf muscles provides valuable comprehensive datasets for e.g. simulations with neuro-muscular models, development of more realistic muscle models, or simulation of muscle packages.http://europepmc.org/articles/PMC4482742?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Tobias Siebert Kay Leichsenring Christian Rode Carolin Wick Norman Stutzig Harald Schubert Reinhard Blickhan Markus Böl |
spellingShingle |
Tobias Siebert Kay Leichsenring Christian Rode Carolin Wick Norman Stutzig Harald Schubert Reinhard Blickhan Markus Böl Three-Dimensional Muscle Architecture and Comprehensive Dynamic Properties of Rabbit Gastrocnemius, Plantaris and Soleus: Input for Simulation Studies. PLoS ONE |
author_facet |
Tobias Siebert Kay Leichsenring Christian Rode Carolin Wick Norman Stutzig Harald Schubert Reinhard Blickhan Markus Böl |
author_sort |
Tobias Siebert |
title |
Three-Dimensional Muscle Architecture and Comprehensive Dynamic Properties of Rabbit Gastrocnemius, Plantaris and Soleus: Input for Simulation Studies. |
title_short |
Three-Dimensional Muscle Architecture and Comprehensive Dynamic Properties of Rabbit Gastrocnemius, Plantaris and Soleus: Input for Simulation Studies. |
title_full |
Three-Dimensional Muscle Architecture and Comprehensive Dynamic Properties of Rabbit Gastrocnemius, Plantaris and Soleus: Input for Simulation Studies. |
title_fullStr |
Three-Dimensional Muscle Architecture and Comprehensive Dynamic Properties of Rabbit Gastrocnemius, Plantaris and Soleus: Input for Simulation Studies. |
title_full_unstemmed |
Three-Dimensional Muscle Architecture and Comprehensive Dynamic Properties of Rabbit Gastrocnemius, Plantaris and Soleus: Input for Simulation Studies. |
title_sort |
three-dimensional muscle architecture and comprehensive dynamic properties of rabbit gastrocnemius, plantaris and soleus: input for simulation studies. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2015-01-01 |
description |
The vastly increasing number of neuro-muscular simulation studies (with increasing numbers of muscles used per simulation) is in sharp contrast to a narrow database of necessary muscle parameters. Simulation results depend heavily on rough parameter estimates often obtained by scaling of one muscle parameter set. However, in vivo muscles differ in their individual properties and architecture. Here we provide a comprehensive dataset of dynamic (n = 6 per muscle) and geometric (three-dimensional architecture, n = 3 per muscle) muscle properties of the rabbit calf muscles gastrocnemius, plantaris, and soleus. For completeness we provide the dynamic muscle properties for further important shank muscles (flexor digitorum longus, extensor digitorum longus, and tibialis anterior; n = 1 per muscle). Maximum shortening velocity (normalized to optimal fiber length) of the gastrocnemius is about twice that of soleus, while plantaris showed an intermediate value. The force-velocity relation is similar for gastrocnemius and plantaris but is much more bent for the soleus. Although the muscles vary greatly in their three-dimensional architecture their mean pennation angle and normalized force-length relationships are almost similar. Forces of the muscles were enhanced in the isometric phase following stretching and were depressed following shortening compared to the corresponding isometric forces. While the enhancement was independent of the ramp velocity, the depression was inversely related to the ramp velocity. The lowest effect strength for soleus supports the idea that these effects adapt to muscle function. The careful acquisition of typical dynamical parameters (e.g. force-length and force-velocity relations, force elongation relations of passive components), enhancement and depression effects, and 3D muscle architecture of calf muscles provides valuable comprehensive datasets for e.g. simulations with neuro-muscular models, development of more realistic muscle models, or simulation of muscle packages. |
url |
http://europepmc.org/articles/PMC4482742?pdf=render |
work_keys_str_mv |
AT tobiassiebert threedimensionalmusclearchitectureandcomprehensivedynamicpropertiesofrabbitgastrocnemiusplantarisandsoleusinputforsimulationstudies AT kayleichsenring threedimensionalmusclearchitectureandcomprehensivedynamicpropertiesofrabbitgastrocnemiusplantarisandsoleusinputforsimulationstudies AT christianrode threedimensionalmusclearchitectureandcomprehensivedynamicpropertiesofrabbitgastrocnemiusplantarisandsoleusinputforsimulationstudies AT carolinwick threedimensionalmusclearchitectureandcomprehensivedynamicpropertiesofrabbitgastrocnemiusplantarisandsoleusinputforsimulationstudies AT normanstutzig threedimensionalmusclearchitectureandcomprehensivedynamicpropertiesofrabbitgastrocnemiusplantarisandsoleusinputforsimulationstudies AT haraldschubert threedimensionalmusclearchitectureandcomprehensivedynamicpropertiesofrabbitgastrocnemiusplantarisandsoleusinputforsimulationstudies AT reinhardblickhan threedimensionalmusclearchitectureandcomprehensivedynamicpropertiesofrabbitgastrocnemiusplantarisandsoleusinputforsimulationstudies AT markusbol threedimensionalmusclearchitectureandcomprehensivedynamicpropertiesofrabbitgastrocnemiusplantarisandsoleusinputforsimulationstudies |
_version_ |
1725988029239132160 |