Local Influence Analysis for Quasi-Likelihood Nonlinear Models with Random Effects
We propose a quasi-likelihood nonlinear model with random effects, which is a hybrid extension of quasi-likelihood nonlinear models and generalized linear mixed models. It includes a wide class of existing models as examples. A novel penalized quasi-likelihood estimation method is introduced. Based...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2018-01-01
|
Series: | Journal of Probability and Statistics |
Online Access: | http://dx.doi.org/10.1155/2018/4878925 |
Summary: | We propose a quasi-likelihood nonlinear model with random effects, which is a hybrid extension of quasi-likelihood nonlinear models and generalized linear mixed models. It includes a wide class of existing models as examples. A novel penalized quasi-likelihood estimation method is introduced. Based on the Laplace approximation and a penalized quasi-likelihood displacement, local influence of minor perturbations on the data set is investigated for the proposed model. Four concrete perturbation schemes are considered in the local influence analysis. The effectiveness of the proposed methodology is illustrated by some numerical examinations on a pharmacokinetics dataset. |
---|---|
ISSN: | 1687-952X 1687-9538 |