Large-Scale Waste Bio-Remediation Using Microalgae Cultivation as a Platform

Municipal and agricultural waste treatment is one of the key elements of reducing environmental impact with direct effects on the economy and society. Algal technology has been tested to enable effective recycling and valorisation of wastewater nutrients including carbon, nitrogen and phosphorus. An...

Full description

Bibliographic Details
Main Authors: Alla Silkina, Naomi E. Ginnever, Fleuriane Fernandes, Claudio Fuentes-Grünewald
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/12/14/2772
Description
Summary:Municipal and agricultural waste treatment is one of the key elements of reducing environmental impact with direct effects on the economy and society. Algal technology has been tested to enable effective recycling and valorisation of wastewater nutrients including carbon, nitrogen and phosphorus. An integrated evaluation and optimisation of the sustainability of an algal bio-refinery, including mass and energy balances, carbon, water and nutrient use and impact analysis, was assessed. A bio-refinery approach of waste remediation using algal cultivation was developed at Swansea University, focusing on nutrient recovery via algal biomass exploitation in pilot facilities. Mass cultivation (up to 1.5 m<sup>3</sup>) was developed with 99% of nitrogen and phosphorus uptake by microalgal cultures. <i>Nannochloropsis oceanica</i> was used as a biological model and grown on three waste sources. The compounds obtained from the biomass were evaluated for animal feed and as a potential source of energy. The bioremediation through algal biotechnology was examined and compared to alternative nutrient recovery passive and active methods in order to know the most efficient way of excess nutrient management. Conclusions emphasise the high potential of algal biotechnology for waste remediation and nutrients recovery, despite the need for further development and scalable applications of this new technology.
ISSN:1996-1073