Closeness Degree-Based Hesitant Trapezoidal Fuzzy Multicriteria Decision Making Method for Evaluating Green Suppliers with Qualitative Information

The aim of this study is to develop a new closeness degree-based hesitant trapezoidal fuzzy (HTrF) multicriteria decision making (MCDM) approach for identifying the most appropriate green suppliers in food supply chain involving uncertain qualitative evaluation information. The uniqueness of the pro...

Full description

Bibliographic Details
Main Authors: Xiaolu Zhang, Touping Yang, Wei Liang, Meifang Xiong
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2018/3178039
Description
Summary:The aim of this study is to develop a new closeness degree-based hesitant trapezoidal fuzzy (HTrF) multicriteria decision making (MCDM) approach for identifying the most appropriate green suppliers in food supply chain involving uncertain qualitative evaluation information. The uniqueness of the proposed HTrF MCDM method is the consideration of uncertain qualitative information represented by flexible linguistic expressions based on HTrF values and the construction of compromise solution with the revised closeness degree. The revised closeness degree can make sure that the most appropriate solution has the shortest distance from the HTrF positive ideal solution and the farthest distance from the HTrF negative ideal solution, simultaneously. This proposed HTrF MCDM technique not only offers a simple and efficient decision support tool to aid the food firms for identifying the optimal suppliers in food supply chain but also can enable the managers of food firms to better understand the complete evaluation and decision processes. In addition, this study provides a novel defuzzification technique to manage the HTrF weights values of main-criteria and subcriteria, respectively.
ISSN:1026-0226
1607-887X