Summary: | The performance of a wind turbine generator (WTG) is highly dependent on the interaction of a rotor blade with complex fluid behaviors, especially the induced vortex structure. In this paper, vortical flows around a blade were first investigated by the unsteady Reynolds averaged Navier–Stokes (RANS) simulation with shear stress transport (SST) turbulence model. It showed that the vortical flows were strongly formed at the blade tip due to the 3D behavior of the boundary layers dominated by pressure gradient. The strong secondary flow was also formed at the near hub due to the Coriolis force and the centrifugal force. At the interacting region of the rotating blade with the tower, the power production was reduced by 22.1% due to the high-pressure fluctuation of the 3P frequency. Based on the close investigation, methods for enhancing the power performance of a WTG were explored, which included the optimization of winglet and ogee design for the blade tip and optimal layout of the nacelle anemometer. The optimized winglet achieved the increase of aerodynamic performance with 0.54%, and the optimal location of the nacelle anemometer was found with a low-turbulence intensity level of 0.003 normalized by the rotor tip speed. The results showed that the traditional anemometer needs to consider the intrinsic flow angle of 11.43° to avoid the loss of aerodynamic performance caused from yaw error.
|