Deep Multiple Metric Learning for Time Series Classification

Effective distance metric plays an important role in time series classification. Metric learning, which aims to learn a data-adaptive distance metric to measure the distance among samples, has achieved promising results on time series classification. However, most existing approaches focus on learni...

Full description

Bibliographic Details
Main Authors: Zhi Chen, Yongguo Liu, Jiajing Zhu, Yun Zhang, Qiaoqin Li, Rongjiang Jin, Xia He
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9333557/
Description
Summary:Effective distance metric plays an important role in time series classification. Metric learning, which aims to learn a data-adaptive distance metric to measure the distance among samples, has achieved promising results on time series classification. However, most existing approaches focus on learning a single linear metric, which is unsuitable for nonlinear relationships and heterogeneous datasets with locality information. Besides, the hard samples in the training set account for only a small part, which may fail to characterize the global geometry of the metric embedding space. In this paper, we propose a novel deep multiple metric learning (DMML) method for time series classification. DMML contains a convolutional network component to extract nonlinear features of time series. For exploiting locality information, the last feature layer of the convolutional network is divided into several nonoverlapping groups and a separate metric learner is built on each group to get multiple metrics. In order to reduce the correlations among learners and facilitate robust metric learning, we design an adversarial negative generator to synthesize different hard negative complements for different metric learners. Moreover, an auxiliary loss is introduced to increase the robustness of DMML for the magnitude of distance. Extensive experiments on UCR datasets demonstrate the effectiveness of DMML for time series classification.
ISSN:2169-3536