Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems.
It has been suggested that neural systems across several scales of organization show optimal component placement, in which any spatial rearrangement of the components would lead to an increase of total wiring. Using extensive connectivity datasets for diverse neural networks combined with spatial co...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2006-07-01
|
Series: | PLoS Computational Biology |
Online Access: | http://europepmc.org/articles/PMC1513269?pdf=render |
id |
doaj-20e3d0b434dc463c85356ea714c60c55 |
---|---|
record_format |
Article |
spelling |
doaj-20e3d0b434dc463c85356ea714c60c552020-11-25T01:11:55ZengPublic Library of Science (PLoS)PLoS Computational Biology1553-734X1553-73582006-07-0127e9510.1371/journal.pcbi.0020095Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems.Marcus KaiserClaus C HilgetagIt has been suggested that neural systems across several scales of organization show optimal component placement, in which any spatial rearrangement of the components would lead to an increase of total wiring. Using extensive connectivity datasets for diverse neural networks combined with spatial coordinates for network nodes, we applied an optimization algorithm to the network layouts, in order to search for wire-saving component rearrangements. We found that optimized component rearrangements could substantially reduce total wiring length in all tested neural networks. Specifically, total wiring among 95 primate (Macaque) cortical areas could be decreased by 32%, and wiring of neuronal networks in the nematode Caenorhabditis elegans could be reduced by 48% on the global level, and by 49% for neurons within frontal ganglia. Wiring length reductions were possible due to the existence of long-distance projections in neural networks. We explored the role of these projections by comparing the original networks with minimally rewired networks of the same size, which possessed only the shortest possible connections. In the minimally rewired networks, the number of processing steps along the shortest paths between components was significantly increased compared to the original networks. Additional benchmark comparisons also indicated that neural networks are more similar to network layouts that minimize the length of processing paths, rather than wiring length. These findings suggest that neural systems are not exclusively optimized for minimal global wiring, but for a variety of factors including the minimization of processing steps.http://europepmc.org/articles/PMC1513269?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Marcus Kaiser Claus C Hilgetag |
spellingShingle |
Marcus Kaiser Claus C Hilgetag Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Computational Biology |
author_facet |
Marcus Kaiser Claus C Hilgetag |
author_sort |
Marcus Kaiser |
title |
Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. |
title_short |
Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. |
title_full |
Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. |
title_fullStr |
Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. |
title_full_unstemmed |
Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. |
title_sort |
nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS Computational Biology |
issn |
1553-734X 1553-7358 |
publishDate |
2006-07-01 |
description |
It has been suggested that neural systems across several scales of organization show optimal component placement, in which any spatial rearrangement of the components would lead to an increase of total wiring. Using extensive connectivity datasets for diverse neural networks combined with spatial coordinates for network nodes, we applied an optimization algorithm to the network layouts, in order to search for wire-saving component rearrangements. We found that optimized component rearrangements could substantially reduce total wiring length in all tested neural networks. Specifically, total wiring among 95 primate (Macaque) cortical areas could be decreased by 32%, and wiring of neuronal networks in the nematode Caenorhabditis elegans could be reduced by 48% on the global level, and by 49% for neurons within frontal ganglia. Wiring length reductions were possible due to the existence of long-distance projections in neural networks. We explored the role of these projections by comparing the original networks with minimally rewired networks of the same size, which possessed only the shortest possible connections. In the minimally rewired networks, the number of processing steps along the shortest paths between components was significantly increased compared to the original networks. Additional benchmark comparisons also indicated that neural networks are more similar to network layouts that minimize the length of processing paths, rather than wiring length. These findings suggest that neural systems are not exclusively optimized for minimal global wiring, but for a variety of factors including the minimization of processing steps. |
url |
http://europepmc.org/articles/PMC1513269?pdf=render |
work_keys_str_mv |
AT marcuskaiser nonoptimalcomponentplacementbutshortprocessingpathsduetolongdistanceprojectionsinneuralsystems AT clauschilgetag nonoptimalcomponentplacementbutshortprocessingpathsduetolongdistanceprojectionsinneuralsystems |
_version_ |
1725168891725873152 |