Identification of amino acid residues in the ligand binding repeats of LDL receptor important for PCSK9 binding[S]

Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes LDL receptor (LDLR) degradation, increasing plasma levels of LDL cholesterol and the risk of cardiovascular disease. We have previously shown that, in addition to the epidermal growth factor precursor homology repeat-A of LDLR, at least...

Full description

Bibliographic Details
Main Authors: Shi-jun Deng, Adekunle Alabi, Hong-mei Gu, Ayinuer Adijiang, Shucun Qin, Da-wei Zhang
Format: Article
Language:English
Published: Elsevier 2019-03-01
Series:Journal of Lipid Research
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0022227520326158
Description
Summary:Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes LDL receptor (LDLR) degradation, increasing plasma levels of LDL cholesterol and the risk of cardiovascular disease. We have previously shown that, in addition to the epidermal growth factor precursor homology repeat-A of LDLR, at least three ligand-binding repeats (LRs) of LDLR are required for PCSK9-promoted LDLR degradation. However, how exactly the LRs contribute to PCSK9's action on the receptor is not completely understood. Here, we found that substitution of Asp at position 172 in the linker between the LR4 and LR5 of full-length LDLR with Asn (D172N) reduced PCSK9 binding at pH 7.4 (mimic cell surface), but not at pH 6.0 (mimic endosomal environment). On the other hand, mutation of Asp at position 203 in the LR5 of full-length LDLR to Asn (D203N) significantly reduced PCSK9 binding at both pH 7.4 and pH 6.0. D203N also significantly reduced the ability of LDLR to mediate cellular LDL uptake, whereas D172N had no detectable effect. These findings indicate that amino acid residues in the LRs of LDLR play an important role in PCSK9 binding to the receptor.
ISSN:0022-2275