Analysis and Comparison of Bayesian Methods for Measurement Uncertainty Evaluation
Based on the Bayesian principle, the modern uncertainty evaluation methods can fully integrate prior and current sample information, determine the prior distribution according to historical information, and deduce the posterior distribution by integrating prior distribution and the current sample da...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2018-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2018/7509046 |
id |
doaj-20e1098e944341948ed71679676fd8d4 |
---|---|
record_format |
Article |
spelling |
doaj-20e1098e944341948ed71679676fd8d42020-11-25T00:27:33ZengHindawi LimitedMathematical Problems in Engineering1024-123X1563-51472018-01-01201810.1155/2018/75090467509046Analysis and Comparison of Bayesian Methods for Measurement Uncertainty EvaluationYin-bao Cheng0Xiao-huai Chen1Hong-li Li2Zhen-ying Cheng3Rui Jiang4Jing Lü5Hua-dong Fu6School of Instrument Science and Opto-Electronic Engineering, Hefei University of Technology, Hefei 230009, ChinaSchool of Instrument Science and Opto-Electronic Engineering, Hefei University of Technology, Hefei 230009, ChinaSchool of Instrument Science and Opto-Electronic Engineering, Hefei University of Technology, Hefei 230009, ChinaSchool of Instrument Science and Opto-Electronic Engineering, Hefei University of Technology, Hefei 230009, ChinaXi'an North Electro-Optic Science and Technology Defense Co., Ltd, Xi'an 710043, ChinaChina National Accreditation Service for Conformity Assessment, Beijing 100062, ChinaChina National Accreditation Service for Conformity Assessment, Beijing 100062, ChinaBased on the Bayesian principle, the modern uncertainty evaluation methods can fully integrate prior and current sample information, determine the prior distribution according to historical information, and deduce the posterior distribution by integrating prior distribution and the current sample data with the Bayesian model. As such, it is possible to evaluate uncertainty, updating in real time the uncertainty of the measuring instrument according to regular measurement, and timely reflect the latest information on the accuracy of the measurement system. Based on the Bayesian information fusion and statistical inference principle, the model of uncertainty evaluation is established. The maximum entropy principle and the hill-climbing search optimization algorithm are introduced to determine the prior distribution probability density function and the sample information likelihood function. The probability density function of posterior distribution is obtained by the Bayesian formula to achieve the optimization estimation of uncertainty. Three methods of measurement uncertainty evaluation based on Bayesian analysis are introduced: the noninformative prior, the conjugate prior, and the maximum entropy prior distribution. The advantages and limitations of each method are discussed.http://dx.doi.org/10.1155/2018/7509046 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yin-bao Cheng Xiao-huai Chen Hong-li Li Zhen-ying Cheng Rui Jiang Jing Lü Hua-dong Fu |
spellingShingle |
Yin-bao Cheng Xiao-huai Chen Hong-li Li Zhen-ying Cheng Rui Jiang Jing Lü Hua-dong Fu Analysis and Comparison of Bayesian Methods for Measurement Uncertainty Evaluation Mathematical Problems in Engineering |
author_facet |
Yin-bao Cheng Xiao-huai Chen Hong-li Li Zhen-ying Cheng Rui Jiang Jing Lü Hua-dong Fu |
author_sort |
Yin-bao Cheng |
title |
Analysis and Comparison of Bayesian Methods for Measurement Uncertainty Evaluation |
title_short |
Analysis and Comparison of Bayesian Methods for Measurement Uncertainty Evaluation |
title_full |
Analysis and Comparison of Bayesian Methods for Measurement Uncertainty Evaluation |
title_fullStr |
Analysis and Comparison of Bayesian Methods for Measurement Uncertainty Evaluation |
title_full_unstemmed |
Analysis and Comparison of Bayesian Methods for Measurement Uncertainty Evaluation |
title_sort |
analysis and comparison of bayesian methods for measurement uncertainty evaluation |
publisher |
Hindawi Limited |
series |
Mathematical Problems in Engineering |
issn |
1024-123X 1563-5147 |
publishDate |
2018-01-01 |
description |
Based on the Bayesian principle, the modern uncertainty evaluation methods can fully integrate prior and current sample information, determine the prior distribution according to historical information, and deduce the posterior distribution by integrating prior distribution and the current sample data with the Bayesian model. As such, it is possible to evaluate uncertainty, updating in real time the uncertainty of the measuring instrument according to regular measurement, and timely reflect the latest information on the accuracy of the measurement system. Based on the Bayesian information fusion and statistical inference principle, the model of uncertainty evaluation is established. The maximum entropy principle and the hill-climbing search optimization algorithm are introduced to determine the prior distribution probability density function and the sample information likelihood function. The probability density function of posterior distribution is obtained by the Bayesian formula to achieve the optimization estimation of uncertainty. Three methods of measurement uncertainty evaluation based on Bayesian analysis are introduced: the noninformative prior, the conjugate prior, and the maximum entropy prior distribution. The advantages and limitations of each method are discussed. |
url |
http://dx.doi.org/10.1155/2018/7509046 |
work_keys_str_mv |
AT yinbaocheng analysisandcomparisonofbayesianmethodsformeasurementuncertaintyevaluation AT xiaohuaichen analysisandcomparisonofbayesianmethodsformeasurementuncertaintyevaluation AT honglili analysisandcomparisonofbayesianmethodsformeasurementuncertaintyevaluation AT zhenyingcheng analysisandcomparisonofbayesianmethodsformeasurementuncertaintyevaluation AT ruijiang analysisandcomparisonofbayesianmethodsformeasurementuncertaintyevaluation AT jinglu analysisandcomparisonofbayesianmethodsformeasurementuncertaintyevaluation AT huadongfu analysisandcomparisonofbayesianmethodsformeasurementuncertaintyevaluation |
_version_ |
1725339032151392256 |