The Solutions of Mixed Monotone Fredholm-Type Integral Equations in Banach Spaces
By introducing new definitions of ϕ convex and -φ concave quasioperator and v0 quasilower and u0 quasiupper, by means of the monotone iterative techniques without any compactness conditions, we obtain the iterative unique solution of nonlinear mixed monotone Fredholm-type integral equations in Banac...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2013-01-01
|
Series: | Discrete Dynamics in Nature and Society |
Online Access: | http://dx.doi.org/10.1155/2013/604105 |
Summary: | By introducing new definitions of ϕ convex and -φ concave quasioperator and v0 quasilower and u0 quasiupper, by means of the monotone iterative techniques without any compactness conditions, we obtain the iterative unique solution of nonlinear mixed monotone Fredholm-type integral equations in Banach spaces. Our results are even new to ϕ convex and -φ concave quasi operator, and then we apply these results to the two-point boundary value problem of second-order nonlinear ordinary differential equations in the ordered Banach spaces. |
---|---|
ISSN: | 1026-0226 1607-887X |