Text and data mining techniques in aspect of knowledge acquisition for decision support system in construction industry / Duomenų rinkimo metodai statybos sprendimų paramos sistemai

This article presents the possibilities of using mining techniques in building Decision Support Systems. One of the biggest problems is the issue of gaining data and knowledge, their mutual representation and reciprocal usage. Data and knowledge make up the resources of the system and are its key l...

Full description

Bibliographic Details
Main Author: Marcin Gajzler
Format: Article
Language:English
Published: Vilnius Gediminas Technical University 2010-06-01
Series:Technological and Economic Development of Economy
Subjects:
Online Access:https://journals.vgtu.lt/index.php/TEDE/article/view/5864
id doaj-20b4903870f04a568d8fb0a797c244f0
record_format Article
spelling doaj-20b4903870f04a568d8fb0a797c244f02021-07-02T02:01:28ZengVilnius Gediminas Technical UniversityTechnological and Economic Development of Economy2029-49132029-49212010-06-0116210.3846/tede.2010.14Text and data mining techniques in aspect of knowledge acquisition for decision support system in construction industry / Duomenų rinkimo metodai statybos sprendimų paramos sistemaiMarcin Gajzler0Poznan University of Technology, Piotrowo 5, 60-965 Poznan, Poland This article presents the possibilities of using mining techniques in building Decision Support Systems. One of the biggest problems is the issue of gaining data and knowledge, their mutual representation and reciprocal usage. Data and knowledge make up the resources of the system and are its key link. It has been estimated that 70% to 80% of the sources available for general use are text documents. The text mining technique is defined as a process aiming to extract previously unknown information from text resources (e.g. technological cards). The fundamental feature of text mining is the ability to converse text documents in formal form, which opens up great possibilities of conducting further analysis. This article presents chosen IT tools using text mining technique, along with the elements of the text mining analysis. The main objectives are the simplification of the process of knowledge acquisition, its automation and shortening as well as the creation of ready‐made models containing knowledge. Previous tests with knowledge acquisition (surveys, questionnaires) were time‐consuming and exacting for experts. Santrauka Straipsnyje pateikiamos informacijos rinkimo metodu pritaikymo galimybės sprendimų paramos sistemoms statyboje. Daugiausia problemų sukelia informacijos gavimas, tinkamas jos atvaizdavimas ir naudojimas. Duomenys yra pagrindinis sistemos išteklius. Nustatyta, kad nuo 70 iki 80 % visu turimų bendrojo naudojimo informacijos šaltinių yra tekstiniai dokumentai. Tekstines informacijos rinkimo technika yra suprantama kaip procesas, kuriuo siekiama išgauti anksčiau nežinoma informacija iš tekstiniu dokumentu (pavyzdžiui, technologiniu kortelių). Pagrindine šios technikos savybė ‐ galimybė tekstinių dokumentų informacija pateikti formalizuota forma, tai atveria plačiu galimybių tolesnei analizei. Šiame straipsnyje pateikiamos pasirinktos IT priemonės, naudojamos tekstinei informacijai rinkti. Autoriaus tikslas ‐ su paprastinti informacijos rinkimą, ji automatizuoti ir sutrumpinti, sukurti informacija apimančius modelius. Ankstesni informacijos kaupimo metodai (apklausos, anketos) reikalavo daug ekspertų darbo ir laiko. Reikšminiai žodžiai: sprendimu paramos sistemos, informacijos rinkimas, tekstu analize, AI modeliai, konsultavimo sistema https://journals.vgtu.lt/index.php/TEDE/article/view/5864decision support systemsknowledge acquisitiontext miningAI modelsadvisory system
collection DOAJ
language English
format Article
sources DOAJ
author Marcin Gajzler
spellingShingle Marcin Gajzler
Text and data mining techniques in aspect of knowledge acquisition for decision support system in construction industry / Duomenų rinkimo metodai statybos sprendimų paramos sistemai
Technological and Economic Development of Economy
decision support systems
knowledge acquisition
text mining
AI models
advisory system
author_facet Marcin Gajzler
author_sort Marcin Gajzler
title Text and data mining techniques in aspect of knowledge acquisition for decision support system in construction industry / Duomenų rinkimo metodai statybos sprendimų paramos sistemai
title_short Text and data mining techniques in aspect of knowledge acquisition for decision support system in construction industry / Duomenų rinkimo metodai statybos sprendimų paramos sistemai
title_full Text and data mining techniques in aspect of knowledge acquisition for decision support system in construction industry / Duomenų rinkimo metodai statybos sprendimų paramos sistemai
title_fullStr Text and data mining techniques in aspect of knowledge acquisition for decision support system in construction industry / Duomenų rinkimo metodai statybos sprendimų paramos sistemai
title_full_unstemmed Text and data mining techniques in aspect of knowledge acquisition for decision support system in construction industry / Duomenų rinkimo metodai statybos sprendimų paramos sistemai
title_sort text and data mining techniques in aspect of knowledge acquisition for decision support system in construction industry / duomenų rinkimo metodai statybos sprendimų paramos sistemai
publisher Vilnius Gediminas Technical University
series Technological and Economic Development of Economy
issn 2029-4913
2029-4921
publishDate 2010-06-01
description This article presents the possibilities of using mining techniques in building Decision Support Systems. One of the biggest problems is the issue of gaining data and knowledge, their mutual representation and reciprocal usage. Data and knowledge make up the resources of the system and are its key link. It has been estimated that 70% to 80% of the sources available for general use are text documents. The text mining technique is defined as a process aiming to extract previously unknown information from text resources (e.g. technological cards). The fundamental feature of text mining is the ability to converse text documents in formal form, which opens up great possibilities of conducting further analysis. This article presents chosen IT tools using text mining technique, along with the elements of the text mining analysis. The main objectives are the simplification of the process of knowledge acquisition, its automation and shortening as well as the creation of ready‐made models containing knowledge. Previous tests with knowledge acquisition (surveys, questionnaires) were time‐consuming and exacting for experts. Santrauka Straipsnyje pateikiamos informacijos rinkimo metodu pritaikymo galimybės sprendimų paramos sistemoms statyboje. Daugiausia problemų sukelia informacijos gavimas, tinkamas jos atvaizdavimas ir naudojimas. Duomenys yra pagrindinis sistemos išteklius. Nustatyta, kad nuo 70 iki 80 % visu turimų bendrojo naudojimo informacijos šaltinių yra tekstiniai dokumentai. Tekstines informacijos rinkimo technika yra suprantama kaip procesas, kuriuo siekiama išgauti anksčiau nežinoma informacija iš tekstiniu dokumentu (pavyzdžiui, technologiniu kortelių). Pagrindine šios technikos savybė ‐ galimybė tekstinių dokumentų informacija pateikti formalizuota forma, tai atveria plačiu galimybių tolesnei analizei. Šiame straipsnyje pateikiamos pasirinktos IT priemonės, naudojamos tekstinei informacijai rinkti. Autoriaus tikslas ‐ su paprastinti informacijos rinkimą, ji automatizuoti ir sutrumpinti, sukurti informacija apimančius modelius. Ankstesni informacijos kaupimo metodai (apklausos, anketos) reikalavo daug ekspertų darbo ir laiko. Reikšminiai žodžiai: sprendimu paramos sistemos, informacijos rinkimas, tekstu analize, AI modeliai, konsultavimo sistema
topic decision support systems
knowledge acquisition
text mining
AI models
advisory system
url https://journals.vgtu.lt/index.php/TEDE/article/view/5864
work_keys_str_mv AT marcingajzler textanddataminingtechniquesinaspectofknowledgeacquisitionfordecisionsupportsysteminconstructionindustryduomenurinkimometodaistatybossprendimuparamossistemai
_version_ 1721343911134232576