Summary: | An equation to describe the water sorption isotherm of tobacco is developed based on a model of the tobacco-water system as a mixture or solid solution comprised of water and water binding sites of many different kinds. It is assumed that free water has an activity coefficient of one. The result is an equation that predicts moisture content as a function of relative humidity given the numbers of each of the different kinds of sites and the associated water binding equilibrium constants. It is shown that this multi-site equation reduces to a one site equation if the different kinds of water binding sites are symmetrically distributed with regard to their affinity for water. The result is a two parameter, average site equation that fits water sorption data for tobacco over the range of 10-80% relative humidity. The average site equation is identical to the equation derived by BRUNAUER, EMMETT and TELLER for binding to surface sites (1). The two models start from very different points of view but come to the same conclusion because they are ultimately based on thermodynamics which is indifferent as to the physical nature of the sites. Inferences as to the microscopic nature of water binding sites cannot be made from thermodynamic isotherm equations. In order to describe the effects of water on the physical properties of tobacco the solution analogy is extended further. If tobacco is a mixture or solution of unhydrated sites, hydrated sites and free water, then the value of a physical property should be a function of the concentrations of those species and the associated partial molar values of the property. As the total moisture content changes the distribution of species will change and, in turn, change the properties. Applications of this rationale are presented for heat capacity, thermal diffusivity and the kinetics of the Browning reaction. The results demonstrate that the parameters derived from water sorption data play a more general role in the thermodynamics of the tobacco-water system.
|