Summary: | Abstract Background The Golden Ratio (GR) and the Fibonacci sequence have wide applications in biodiversity research, and recent studies indicate that the GR can be highlighted in the organization and physiological functioning of many body systems. The aim of this cross-sectional descriptive study is to determine the applicability of a mathematical model derived from the Fibonacci sequence to investigate the changes in hand grip strength (HGS) induced by the aging process. Methods We assessed the HGS for both hands, using a Saehan hydraulic hand dynamometer in a group of autonomous elderly subjects. One hundred twenty 55-year-old subjects (58 males and 62 females) and seventy 89-year-old subjects (31 men and 39 women) were included in the study group. All subjects were completely independent or independent with minimal assistance in activities of daily living (ADL), as determined after applying the Barthel index of ADL. The data series were statistically processed using descriptive statistics (univariate analysis) and inferential statistical methods (the t test for unpaired groups, with effect size measure – Cohen’s d and the ratio of the means method). Results The decline of the relative HGS between the two age groups can be expressed by values close to the GR value (p < 0.001), both in relation to body symmetry (left hand/right hand evaluation) and laterality (dominant hand/non-dominant hand evaluation), for both sexes. For the whole group of men and women, the rhythm of HGS decline may be expressed by a value (1.61) notably close to the GR, regardless of body symmetry or laterality. Conclusions The common pattern of the relative HGS reduction between 55 and 89 years, as expressed by a value notably close to GR, can be considered to be an expression of a specific and predictable manifestation of the aging process, in the absence of disability.
|