Novel benzimidazole-based conjugated polyelectrolytes: synthesis, solution photophysics and fluorescent sensing of metal ions

Two benzimidazole-based conjugated polyelectrolytes (+)-PPBIPV and (-)-PPBIPV which have opposite charges on their side chains were synthesized via Heck coupling reaction and characterized by 1H-NMR, UV-vis and PL spectroscopy. These two polyelectrolytes are both consisted of benzimidazole derivativ...

Full description

Bibliographic Details
Main Authors: Wei Yuhan, Xu Lei, He Shengjiao, Li Chenglei, Wu Qi, Zeng Xianyin, Wang Hanguang, Liu Kuan
Format: Article
Language:English
Published: De Gruyter 2020-01-01
Series:e-Polymers
Subjects:
Online Access:http://www.degruyter.com/view/j/epoly.2020.20.issue-1/epoly-2020-0003/epoly-2020-0003.xml?format=INT
Description
Summary:Two benzimidazole-based conjugated polyelectrolytes (+)-PPBIPV and (-)-PPBIPV which have opposite charges on their side chains were synthesized via Heck coupling reaction and characterized by 1H-NMR, UV-vis and PL spectroscopy. These two polyelectrolytes are both consisted of benzimidazole derivatives and phenylenevinylene units. The absorption and emission spectra reveal that the polymers both have solvent-dependency and concentration-dependency, and they exhibit aggregation effect in aqueous solution. In the respect of ion detection, the aqueous solution of (+)-PPBIPV has excellent selectivity and sensitivity for Fe3+. Moreover, Pd2+ can almost completely quench the fluorescence of (+)-PPBIPV in methanol solution, and its quenching constant KSV is 5.93×104 M-1. For (-)-PPBIPV, Sn2+ can double the fluorescence intensity of its aqueous solution, while (-)-PPBIPV has good identification for Fe3+ in methanol with a KSV = 3.44×105 M-1. Hence, two polyelectrolytes have considerable potential to become effective fluorescent sensing materials for some specific metal ions. All of the stoichiometric relationships between metal ions and conjugated polyelectrolytes were calculated using Benesi-Hildebrand equation.
ISSN:1618-7229