Anti-inflammatory treatment in oxygen–glucose-deprived hippocampal slice cultures is neuroprotective and associated with reduced cell proliferation and intact neurogenesis

Increased neurogenesis in response to brain injury is considered a mechanism of regeneration after neuronal loss. Using organotypic hippocampal cultures (OHC), we investigated the interplay between neuronal damage (propidium iodide uptake), microglia activation (OX-42 immunohistochemistry), cell pro...

Full description

Bibliographic Details
Main Authors: Olga Chechneva, Klaus Dinkel, Fabio Cavaliere, Monica Martinez-Sanchez, Klaus G. Reymann
Format: Article
Language:English
Published: Elsevier 2006-08-01
Series:Neurobiology of Disease
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0969996106000544
Description
Summary:Increased neurogenesis in response to brain injury is considered a mechanism of regeneration after neuronal loss. Using organotypic hippocampal cultures (OHC), we investigated the interplay between neuronal damage (propidium iodide uptake), microglia activation (OX-42 immunohistochemistry), cell proliferation (bromodeoxyuridine incorporation), and neurogenesis (double labeling of bromodeoxyuridine with doublecortin or β-III tubulin) after oxygen–glucose deprivation (OGD). We observed that microglia activation and upregulation of pro-inflammatory cytokines mRNA preceded neuronal loss and was followed by increased cell proliferation. Neurogenesis was inhibited 3 days after OGD in both neurogenic zones of the slice, the dentate gyrus and the posterior periventricle (pPV). After 6 days, neurogenesis was restored and significantly increased in the pPV. Indomethacin or minocycline reduced the OGD-induced damage, proliferation, and increase of microglia. Both agents did not interfere with OGD-induced pPV neurogenesis. Our study shows for the first time that neuroprotection against OGD-induced damage in OHC by anti-inflammatory treatment is associated with intact neurogenesis.
ISSN:1095-953X