Fourier Transform Infrared (FTIR) Spectroscopic Analyses of Microbiological Samples and Biogenic Selenium Nanoparticles of Microbial Origin: Sample Preparation Effects
To demonstrate the importance of sample preparation used in Fourier transform infrared (FTIR) spectroscopy of microbiological materials, bacterial biomass samples with and without grinding and after different drying periods (1.5–23 h at 45 °C), as well as biogenic selenium nanoparticles (SeNPs; with...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-02-01
|
Series: | Molecules |
Subjects: | |
Online Access: | https://www.mdpi.com/1420-3049/26/4/1146 |
id |
doaj-201d08343a444e82815fe7900ca1a18b |
---|---|
record_format |
Article |
spelling |
doaj-201d08343a444e82815fe7900ca1a18b2021-02-22T00:01:47ZengMDPI AGMolecules1420-30492021-02-01261146114610.3390/molecules26041146Fourier Transform Infrared (FTIR) Spectroscopic Analyses of Microbiological Samples and Biogenic Selenium Nanoparticles of Microbial Origin: Sample Preparation EffectsAlexander A. Kamnev0Yulia A. Dyatlova1Odissey A. Kenzhegulov2Anastasiya A. Vladimirova3Polina V. Mamchenkova4Anna V. Tugarova5Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov, RussiaLaboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov, RussiaLaboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov, RussiaLaboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov, RussiaLaboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov, RussiaLaboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov, RussiaTo demonstrate the importance of sample preparation used in Fourier transform infrared (FTIR) spectroscopy of microbiological materials, bacterial biomass samples with and without grinding and after different drying periods (1.5–23 h at 45 °C), as well as biogenic selenium nanoparticles (SeNPs; without washing and after one to three washing steps) were comparatively studied by transmission FTIR spectroscopy. For preparing bacterial biomass samples, <i>Azospirillum brasilense</i> Sp7 and <i>A. baldaniorum</i> Sp245 (earlier known as <i>A. brasilense</i> Sp245) were used. The SeNPs were obtained using <i>A. brasilense</i> Sp7 incubated with selenite. Grinding of the biomass samples was shown to result in slight downshifting of the bands related to cellular poly-3-hydroxybutyrate (PHB) present in the samples in small amounts (under ~10%), reflecting its partial crystallisation. Drying for 23 h was shown to give more reproducible FTIR spectra of bacterial samples. SeNPs were shown to contain capping layers of proteins, polysaccharides and lipids. The as-prepared SeNPs contained significant amounts of carboxylated components in their bioorganic capping, which appeared to be weakly bound and were largely removed after washing. Spectroscopic characteristics and changes induced by various sample preparation steps are discussed with regard to optimising sample treatment procedures for FTIR spectroscopic analyses of microbiological specimens.https://www.mdpi.com/1420-3049/26/4/1146sample preparationFTIR spectroscopybacterial biomassbiogenic selenium nanoparticles<i>Azospirillum brasilense</i><i>Azospirillum baldaniorum</i> |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Alexander A. Kamnev Yulia A. Dyatlova Odissey A. Kenzhegulov Anastasiya A. Vladimirova Polina V. Mamchenkova Anna V. Tugarova |
spellingShingle |
Alexander A. Kamnev Yulia A. Dyatlova Odissey A. Kenzhegulov Anastasiya A. Vladimirova Polina V. Mamchenkova Anna V. Tugarova Fourier Transform Infrared (FTIR) Spectroscopic Analyses of Microbiological Samples and Biogenic Selenium Nanoparticles of Microbial Origin: Sample Preparation Effects Molecules sample preparation FTIR spectroscopy bacterial biomass biogenic selenium nanoparticles <i>Azospirillum brasilense</i> <i>Azospirillum baldaniorum</i> |
author_facet |
Alexander A. Kamnev Yulia A. Dyatlova Odissey A. Kenzhegulov Anastasiya A. Vladimirova Polina V. Mamchenkova Anna V. Tugarova |
author_sort |
Alexander A. Kamnev |
title |
Fourier Transform Infrared (FTIR) Spectroscopic Analyses of Microbiological Samples and Biogenic Selenium Nanoparticles of Microbial Origin: Sample Preparation Effects |
title_short |
Fourier Transform Infrared (FTIR) Spectroscopic Analyses of Microbiological Samples and Biogenic Selenium Nanoparticles of Microbial Origin: Sample Preparation Effects |
title_full |
Fourier Transform Infrared (FTIR) Spectroscopic Analyses of Microbiological Samples and Biogenic Selenium Nanoparticles of Microbial Origin: Sample Preparation Effects |
title_fullStr |
Fourier Transform Infrared (FTIR) Spectroscopic Analyses of Microbiological Samples and Biogenic Selenium Nanoparticles of Microbial Origin: Sample Preparation Effects |
title_full_unstemmed |
Fourier Transform Infrared (FTIR) Spectroscopic Analyses of Microbiological Samples and Biogenic Selenium Nanoparticles of Microbial Origin: Sample Preparation Effects |
title_sort |
fourier transform infrared (ftir) spectroscopic analyses of microbiological samples and biogenic selenium nanoparticles of microbial origin: sample preparation effects |
publisher |
MDPI AG |
series |
Molecules |
issn |
1420-3049 |
publishDate |
2021-02-01 |
description |
To demonstrate the importance of sample preparation used in Fourier transform infrared (FTIR) spectroscopy of microbiological materials, bacterial biomass samples with and without grinding and after different drying periods (1.5–23 h at 45 °C), as well as biogenic selenium nanoparticles (SeNPs; without washing and after one to three washing steps) were comparatively studied by transmission FTIR spectroscopy. For preparing bacterial biomass samples, <i>Azospirillum brasilense</i> Sp7 and <i>A. baldaniorum</i> Sp245 (earlier known as <i>A. brasilense</i> Sp245) were used. The SeNPs were obtained using <i>A. brasilense</i> Sp7 incubated with selenite. Grinding of the biomass samples was shown to result in slight downshifting of the bands related to cellular poly-3-hydroxybutyrate (PHB) present in the samples in small amounts (under ~10%), reflecting its partial crystallisation. Drying for 23 h was shown to give more reproducible FTIR spectra of bacterial samples. SeNPs were shown to contain capping layers of proteins, polysaccharides and lipids. The as-prepared SeNPs contained significant amounts of carboxylated components in their bioorganic capping, which appeared to be weakly bound and were largely removed after washing. Spectroscopic characteristics and changes induced by various sample preparation steps are discussed with regard to optimising sample treatment procedures for FTIR spectroscopic analyses of microbiological specimens. |
topic |
sample preparation FTIR spectroscopy bacterial biomass biogenic selenium nanoparticles <i>Azospirillum brasilense</i> <i>Azospirillum baldaniorum</i> |
url |
https://www.mdpi.com/1420-3049/26/4/1146 |
work_keys_str_mv |
AT alexanderakamnev fouriertransforminfraredftirspectroscopicanalysesofmicrobiologicalsamplesandbiogenicseleniumnanoparticlesofmicrobialoriginsamplepreparationeffects AT yuliaadyatlova fouriertransforminfraredftirspectroscopicanalysesofmicrobiologicalsamplesandbiogenicseleniumnanoparticlesofmicrobialoriginsamplepreparationeffects AT odisseyakenzhegulov fouriertransforminfraredftirspectroscopicanalysesofmicrobiologicalsamplesandbiogenicseleniumnanoparticlesofmicrobialoriginsamplepreparationeffects AT anastasiyaavladimirova fouriertransforminfraredftirspectroscopicanalysesofmicrobiologicalsamplesandbiogenicseleniumnanoparticlesofmicrobialoriginsamplepreparationeffects AT polinavmamchenkova fouriertransforminfraredftirspectroscopicanalysesofmicrobiologicalsamplesandbiogenicseleniumnanoparticlesofmicrobialoriginsamplepreparationeffects AT annavtugarova fouriertransforminfraredftirspectroscopicanalysesofmicrobiologicalsamplesandbiogenicseleniumnanoparticlesofmicrobialoriginsamplepreparationeffects |
_version_ |
1724257089795129344 |