Facial Expression Recognition via Non-Negative Least-Squares Sparse Coding

Sparse coding is an active research subject in signal processing, computer vision, and pattern recognition. A novel method of facial expression recognition via non-negative least squares (NNLS) sparse coding is presented in this paper. The NNLS sparse coding is used to form a facial expression class...

Full description

Bibliographic Details
Main Authors: Ying Chen, Shiqing Zhang, Xiaoming Zhao
Format: Article
Language:English
Published: MDPI AG 2014-05-01
Series:Information
Subjects:
Online Access:http://www.mdpi.com/2078-2489/5/2/305
Description
Summary:Sparse coding is an active research subject in signal processing, computer vision, and pattern recognition. A novel method of facial expression recognition via non-negative least squares (NNLS) sparse coding is presented in this paper. The NNLS sparse coding is used to form a facial expression classifier. To testify the performance of the presented method, local binary patterns (LBP) and the raw pixels are extracted for facial feature representation. Facial expression recognition experiments are conducted on the Japanese Female Facial Expression (JAFFE) database. Compared with other widely used methods such as linear support vector machines (SVM), sparse representation-based classifier (SRC), nearest subspace classifier (NSC), K-nearest neighbor (KNN) and radial basis function neural networks (RBFNN), the experiment results indicate that the presented NNLS method performs better than other used methods on facial expression recognition tasks.
ISSN:2078-2489