Statistics Learning Network Based on the Quadratic Form for SAR Image Classification

The convolutional neural network (CNN) has shown great potential in many fields; however, transferring this potential to synthetic aperture radar (SAR) image interpretation is still a challenging task. The coherent imaging mechanism causes the SAR signal to present strong fluctuations, and this rand...

Full description

Bibliographic Details
Main Authors: Chu He, Bokun He, Xinlong Liu, Chenyao Kang, Mingsheng Liao
Format: Article
Language:English
Published: MDPI AG 2019-02-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/11/3/282
Description
Summary:The convolutional neural network (CNN) has shown great potential in many fields; however, transferring this potential to synthetic aperture radar (SAR) image interpretation is still a challenging task. The coherent imaging mechanism causes the SAR signal to present strong fluctuations, and this randomness property calls for many degrees of freedom (DoFs) for the SAR image description. In this paper, a statistics learning network (SLN) based on the quadratic form is presented. The statistical features are expected to be fitted in the SLN for SAR image representation. (<b>i</b>) Relying on the quadratic form in linear algebra theory, a quadratic primitive is developed to comprehensively learn the elementary statistical features. This primitive is an extension to the convolutional primitive that involves both nonlinear and linear transformations and provides more flexibility in feature extraction. (<b>ii</b>) With the aid of this quadratic primitive, the SLN is proposed for the classification task. In the SLN, different types of statistics of SAR images are automatically extracted for representation. Experimental results on three datasets show that the SLN outperforms a standard CNN and traditional texture-based methods and has potential for SAR image classification.
ISSN:2072-4292