Development and Reorganization of Orientation Representation in the Cat Visual Cortex: Experience-Dependent Synaptic Rewiring in Early Life
To date, numerous mathematical models have been proposed on the basis of some types of Hebbian synaptic learning to account for the activity-dependent development of orientation maps as well as neuronal orientation selectivity. These models successfully reproduced orientation map-like spatial patter...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2020-08-01
|
Series: | Frontiers in Neuroinformatics |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fninf.2020.00041/full |
id |
doaj-1ff8de03136646409a8192e94574bdc9 |
---|---|
record_format |
Article |
spelling |
doaj-1ff8de03136646409a8192e94574bdc92020-11-25T03:38:39ZengFrontiers Media S.A.Frontiers in Neuroinformatics1662-51962020-08-011410.3389/fninf.2020.00041517950Development and Reorganization of Orientation Representation in the Cat Visual Cortex: Experience-Dependent Synaptic Rewiring in Early LifeShigeru Tanaka0Masanobu Miyashita1Nodoka Wakabayashi2Kazunori O’Hashi3Toshiki Tani4Jérôme Ribot5Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Chofu, JapanDepartment of Control and Computer Engineering, National Institute of Technology, Numazu College, Numazu, JapanPower Plant Engineering, Engineering & Maintenance Center, All Nippon Airways Co., Ltd., Tokyo, JapanDepartment of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, JapanLaboratory for Molecular Analysis of Higher Brain Functions, RIKEN Center for Brain Science, Wako, JapanCentre for Interdisciplinary Research in Biology, Collège de France, Paris, FranceTo date, numerous mathematical models have been proposed on the basis of some types of Hebbian synaptic learning to account for the activity-dependent development of orientation maps as well as neuronal orientation selectivity. These models successfully reproduced orientation map-like spatial patterns. Nevertheless, we still have questions: (1) How does synaptic rewiring occur in the visual cortex during the formation of orderly orientation maps in early life? (2) How does visual experience contribute to the maturation of orientation selectivity of visual cortical neurons and reorganize orientation maps? (3) How does the sensitive period for orientation plasticity end? In this study, we performed animal experiments and mathematical modeling to understand the mechanisms underlying synaptic rewiring for experience-dependent formation and reorganization of orientation maps. At first, we visualized orientation maps from the intrinsic signal optical imaging in area 17 of kittens reared under single-orientation exposure through cylindrical-lens-fitted goggles. The experiments revealed that the degree of expansion of cortical domains representing the experienced orientation depends on the age at which the single-orientation exposure starts. As a result, we obtained the sensitive period profile for orientation plasticity. Next, we refined our previously proposed mathematical model for the activity-dependent self-organization of thalamo-cortical inputs on the assumption that rewiring is caused by the competitive interactions among transient synaptic contacts on the same dendritic spine. Although various kinds of molecules have been reported to be involved in such interactions, we attempt to build a mathematical model to describe synaptic rewiring focusing on brain-derived neurotrophic factor (BDNF) and its related molecules. Performing computer simulations based on the refined model, we successfully reproduced orientation maps reorganized in kittens reared under single-orientation exposure as well as normal visual experience. We also reproduced the experimentally obtained sensitive period profile for orientation plasticity. The excellent agreement between experimental observations and theoretical reproductions suggests that the BDNF-induced competitive interaction among synaptic contacts from different axons on the same spine is an important factor for the experience-dependent formation and reorganization of orientation selectivity and orientation maps.https://www.frontiersin.org/article/10.3389/fninf.2020.00041/fullorientation mapsself-organizationvisual experiencedevelopmentsensitive period |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Shigeru Tanaka Masanobu Miyashita Nodoka Wakabayashi Kazunori O’Hashi Toshiki Tani Jérôme Ribot |
spellingShingle |
Shigeru Tanaka Masanobu Miyashita Nodoka Wakabayashi Kazunori O’Hashi Toshiki Tani Jérôme Ribot Development and Reorganization of Orientation Representation in the Cat Visual Cortex: Experience-Dependent Synaptic Rewiring in Early Life Frontiers in Neuroinformatics orientation maps self-organization visual experience development sensitive period |
author_facet |
Shigeru Tanaka Masanobu Miyashita Nodoka Wakabayashi Kazunori O’Hashi Toshiki Tani Jérôme Ribot |
author_sort |
Shigeru Tanaka |
title |
Development and Reorganization of Orientation Representation in the Cat Visual Cortex: Experience-Dependent Synaptic Rewiring in Early Life |
title_short |
Development and Reorganization of Orientation Representation in the Cat Visual Cortex: Experience-Dependent Synaptic Rewiring in Early Life |
title_full |
Development and Reorganization of Orientation Representation in the Cat Visual Cortex: Experience-Dependent Synaptic Rewiring in Early Life |
title_fullStr |
Development and Reorganization of Orientation Representation in the Cat Visual Cortex: Experience-Dependent Synaptic Rewiring in Early Life |
title_full_unstemmed |
Development and Reorganization of Orientation Representation in the Cat Visual Cortex: Experience-Dependent Synaptic Rewiring in Early Life |
title_sort |
development and reorganization of orientation representation in the cat visual cortex: experience-dependent synaptic rewiring in early life |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Neuroinformatics |
issn |
1662-5196 |
publishDate |
2020-08-01 |
description |
To date, numerous mathematical models have been proposed on the basis of some types of Hebbian synaptic learning to account for the activity-dependent development of orientation maps as well as neuronal orientation selectivity. These models successfully reproduced orientation map-like spatial patterns. Nevertheless, we still have questions: (1) How does synaptic rewiring occur in the visual cortex during the formation of orderly orientation maps in early life? (2) How does visual experience contribute to the maturation of orientation selectivity of visual cortical neurons and reorganize orientation maps? (3) How does the sensitive period for orientation plasticity end? In this study, we performed animal experiments and mathematical modeling to understand the mechanisms underlying synaptic rewiring for experience-dependent formation and reorganization of orientation maps. At first, we visualized orientation maps from the intrinsic signal optical imaging in area 17 of kittens reared under single-orientation exposure through cylindrical-lens-fitted goggles. The experiments revealed that the degree of expansion of cortical domains representing the experienced orientation depends on the age at which the single-orientation exposure starts. As a result, we obtained the sensitive period profile for orientation plasticity. Next, we refined our previously proposed mathematical model for the activity-dependent self-organization of thalamo-cortical inputs on the assumption that rewiring is caused by the competitive interactions among transient synaptic contacts on the same dendritic spine. Although various kinds of molecules have been reported to be involved in such interactions, we attempt to build a mathematical model to describe synaptic rewiring focusing on brain-derived neurotrophic factor (BDNF) and its related molecules. Performing computer simulations based on the refined model, we successfully reproduced orientation maps reorganized in kittens reared under single-orientation exposure as well as normal visual experience. We also reproduced the experimentally obtained sensitive period profile for orientation plasticity. The excellent agreement between experimental observations and theoretical reproductions suggests that the BDNF-induced competitive interaction among synaptic contacts from different axons on the same spine is an important factor for the experience-dependent formation and reorganization of orientation selectivity and orientation maps. |
topic |
orientation maps self-organization visual experience development sensitive period |
url |
https://www.frontiersin.org/article/10.3389/fninf.2020.00041/full |
work_keys_str_mv |
AT shigerutanaka developmentandreorganizationoforientationrepresentationinthecatvisualcortexexperiencedependentsynapticrewiringinearlylife AT masanobumiyashita developmentandreorganizationoforientationrepresentationinthecatvisualcortexexperiencedependentsynapticrewiringinearlylife AT nodokawakabayashi developmentandreorganizationoforientationrepresentationinthecatvisualcortexexperiencedependentsynapticrewiringinearlylife AT kazunoriohashi developmentandreorganizationoforientationrepresentationinthecatvisualcortexexperiencedependentsynapticrewiringinearlylife AT toshikitani developmentandreorganizationoforientationrepresentationinthecatvisualcortexexperiencedependentsynapticrewiringinearlylife AT jeromeribot developmentandreorganizationoforientationrepresentationinthecatvisualcortexexperiencedependentsynapticrewiringinearlylife |
_version_ |
1724541378884534272 |