Coseismic Fault Model of Mw 8.3 2015 Illapel Earthquake (Chile) Retrieved from Multi-Orbit Sentinel1-A DInSAR Measurements

On 16 September 2015, a Mw 8.3 interplate thrust earthquake ruptured offshore the Illapel region (Chile). Here, we perform coseismic slip fault modeling based on multi-orbit Sentinel 1-A (S1A) data. To do this, we generate ascending and descending S1A interferograms, whose combination allows us to r...

Full description

Bibliographic Details
Main Authors: Giuseppe Solaro, Vincenzo De Novellis, Raffaele Castaldo, Claudio De Luca, Riccardo Lanari, Michele Manunta, Francesco Casu
Format: Article
Language:English
Published: MDPI AG 2016-04-01
Series:Remote Sensing
Subjects:
Online Access:http://www.mdpi.com/2072-4292/8/4/323
id doaj-1fec4d6ccf244f3290baad7f9610459f
record_format Article
spelling doaj-1fec4d6ccf244f3290baad7f9610459f2020-11-24T22:35:42ZengMDPI AGRemote Sensing2072-42922016-04-018432310.3390/rs8040323rs8040323Coseismic Fault Model of Mw 8.3 2015 Illapel Earthquake (Chile) Retrieved from Multi-Orbit Sentinel1-A DInSAR MeasurementsGiuseppe Solaro0Vincenzo De Novellis1Raffaele Castaldo2Claudio De Luca3Riccardo Lanari4Michele Manunta5Francesco Casu6Istituto per il Rilevamento Elettromagnetico dell’Ambiente, IREA-CNR, Via Diocleziano 328, 80124 Napoli, ItalyIstituto per il Rilevamento Elettromagnetico dell’Ambiente, IREA-CNR, Via Diocleziano 328, 80124 Napoli, ItalyIstituto per il Rilevamento Elettromagnetico dell’Ambiente, IREA-CNR, Via Diocleziano 328, 80124 Napoli, ItalyIstituto per il Rilevamento Elettromagnetico dell’Ambiente, IREA-CNR, Via Diocleziano 328, 80124 Napoli, ItalyIstituto per il Rilevamento Elettromagnetico dell’Ambiente, IREA-CNR, Via Diocleziano 328, 80124 Napoli, ItalyIstituto per il Rilevamento Elettromagnetico dell’Ambiente, IREA-CNR, Via Diocleziano 328, 80124 Napoli, ItalyIstituto per il Rilevamento Elettromagnetico dell’Ambiente, IREA-CNR, Via Diocleziano 328, 80124 Napoli, ItalyOn 16 September 2015, a Mw 8.3 interplate thrust earthquake ruptured offshore the Illapel region (Chile). Here, we perform coseismic slip fault modeling based on multi-orbit Sentinel 1-A (S1A) data. To do this, we generate ascending and descending S1A interferograms, whose combination allows us to retrieve the EW and vertical components of deformation. In particular, the EW displacement map highlights a westward displacement of about 210 cm, while the vertical map shows an uplift of about 25 cm along the coast, surrounded by a subsidence of about 20 cm. Following this analysis, we jointly invert the multi-orbit S1A interferograms by using an analytical approach to search for the coseismic fault parameters and related slip values. Most of the slip occurs northwest of the epicenter, with a maximum located in the shallowest 20 km. Finally, we refine our modeling approach by exploiting the Finite Element method, which allows us to take geological and structural complexities into account to simulate the slip along the slab curvature, the von Mises stress distribution, and the principal stress axes orientation. The von Mises stress distribution shows a close similarity to the depth distribution of the aftershock hypocenters. Likewise, the maximum principal stress orientation highlights a compressive regime in correspondence of the deeper portion of the slab and an extensional regime at its shallower segment; these findings are supported by seismological data.http://www.mdpi.com/2072-4292/8/4/323Illapel (Chile) earthquakeSentinel 1-ADInSARfault slip analytical model2D Finite Element model
collection DOAJ
language English
format Article
sources DOAJ
author Giuseppe Solaro
Vincenzo De Novellis
Raffaele Castaldo
Claudio De Luca
Riccardo Lanari
Michele Manunta
Francesco Casu
spellingShingle Giuseppe Solaro
Vincenzo De Novellis
Raffaele Castaldo
Claudio De Luca
Riccardo Lanari
Michele Manunta
Francesco Casu
Coseismic Fault Model of Mw 8.3 2015 Illapel Earthquake (Chile) Retrieved from Multi-Orbit Sentinel1-A DInSAR Measurements
Remote Sensing
Illapel (Chile) earthquake
Sentinel 1-A
DInSAR
fault slip analytical model
2D Finite Element model
author_facet Giuseppe Solaro
Vincenzo De Novellis
Raffaele Castaldo
Claudio De Luca
Riccardo Lanari
Michele Manunta
Francesco Casu
author_sort Giuseppe Solaro
title Coseismic Fault Model of Mw 8.3 2015 Illapel Earthquake (Chile) Retrieved from Multi-Orbit Sentinel1-A DInSAR Measurements
title_short Coseismic Fault Model of Mw 8.3 2015 Illapel Earthquake (Chile) Retrieved from Multi-Orbit Sentinel1-A DInSAR Measurements
title_full Coseismic Fault Model of Mw 8.3 2015 Illapel Earthquake (Chile) Retrieved from Multi-Orbit Sentinel1-A DInSAR Measurements
title_fullStr Coseismic Fault Model of Mw 8.3 2015 Illapel Earthquake (Chile) Retrieved from Multi-Orbit Sentinel1-A DInSAR Measurements
title_full_unstemmed Coseismic Fault Model of Mw 8.3 2015 Illapel Earthquake (Chile) Retrieved from Multi-Orbit Sentinel1-A DInSAR Measurements
title_sort coseismic fault model of mw 8.3 2015 illapel earthquake (chile) retrieved from multi-orbit sentinel1-a dinsar measurements
publisher MDPI AG
series Remote Sensing
issn 2072-4292
publishDate 2016-04-01
description On 16 September 2015, a Mw 8.3 interplate thrust earthquake ruptured offshore the Illapel region (Chile). Here, we perform coseismic slip fault modeling based on multi-orbit Sentinel 1-A (S1A) data. To do this, we generate ascending and descending S1A interferograms, whose combination allows us to retrieve the EW and vertical components of deformation. In particular, the EW displacement map highlights a westward displacement of about 210 cm, while the vertical map shows an uplift of about 25 cm along the coast, surrounded by a subsidence of about 20 cm. Following this analysis, we jointly invert the multi-orbit S1A interferograms by using an analytical approach to search for the coseismic fault parameters and related slip values. Most of the slip occurs northwest of the epicenter, with a maximum located in the shallowest 20 km. Finally, we refine our modeling approach by exploiting the Finite Element method, which allows us to take geological and structural complexities into account to simulate the slip along the slab curvature, the von Mises stress distribution, and the principal stress axes orientation. The von Mises stress distribution shows a close similarity to the depth distribution of the aftershock hypocenters. Likewise, the maximum principal stress orientation highlights a compressive regime in correspondence of the deeper portion of the slab and an extensional regime at its shallower segment; these findings are supported by seismological data.
topic Illapel (Chile) earthquake
Sentinel 1-A
DInSAR
fault slip analytical model
2D Finite Element model
url http://www.mdpi.com/2072-4292/8/4/323
work_keys_str_mv AT giuseppesolaro coseismicfaultmodelofmw832015illapelearthquakechileretrievedfrommultiorbitsentinel1adinsarmeasurements
AT vincenzodenovellis coseismicfaultmodelofmw832015illapelearthquakechileretrievedfrommultiorbitsentinel1adinsarmeasurements
AT raffaelecastaldo coseismicfaultmodelofmw832015illapelearthquakechileretrievedfrommultiorbitsentinel1adinsarmeasurements
AT claudiodeluca coseismicfaultmodelofmw832015illapelearthquakechileretrievedfrommultiorbitsentinel1adinsarmeasurements
AT riccardolanari coseismicfaultmodelofmw832015illapelearthquakechileretrievedfrommultiorbitsentinel1adinsarmeasurements
AT michelemanunta coseismicfaultmodelofmw832015illapelearthquakechileretrievedfrommultiorbitsentinel1adinsarmeasurements
AT francescocasu coseismicfaultmodelofmw832015illapelearthquakechileretrievedfrommultiorbitsentinel1adinsarmeasurements
_version_ 1725723133615276032