Coseismic Fault Model of Mw 8.3 2015 Illapel Earthquake (Chile) Retrieved from Multi-Orbit Sentinel1-A DInSAR Measurements
On 16 September 2015, a Mw 8.3 interplate thrust earthquake ruptured offshore the Illapel region (Chile). Here, we perform coseismic slip fault modeling based on multi-orbit Sentinel 1-A (S1A) data. To do this, we generate ascending and descending S1A interferograms, whose combination allows us to r...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2016-04-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | http://www.mdpi.com/2072-4292/8/4/323 |
id |
doaj-1fec4d6ccf244f3290baad7f9610459f |
---|---|
record_format |
Article |
spelling |
doaj-1fec4d6ccf244f3290baad7f9610459f2020-11-24T22:35:42ZengMDPI AGRemote Sensing2072-42922016-04-018432310.3390/rs8040323rs8040323Coseismic Fault Model of Mw 8.3 2015 Illapel Earthquake (Chile) Retrieved from Multi-Orbit Sentinel1-A DInSAR MeasurementsGiuseppe Solaro0Vincenzo De Novellis1Raffaele Castaldo2Claudio De Luca3Riccardo Lanari4Michele Manunta5Francesco Casu6Istituto per il Rilevamento Elettromagnetico dell’Ambiente, IREA-CNR, Via Diocleziano 328, 80124 Napoli, ItalyIstituto per il Rilevamento Elettromagnetico dell’Ambiente, IREA-CNR, Via Diocleziano 328, 80124 Napoli, ItalyIstituto per il Rilevamento Elettromagnetico dell’Ambiente, IREA-CNR, Via Diocleziano 328, 80124 Napoli, ItalyIstituto per il Rilevamento Elettromagnetico dell’Ambiente, IREA-CNR, Via Diocleziano 328, 80124 Napoli, ItalyIstituto per il Rilevamento Elettromagnetico dell’Ambiente, IREA-CNR, Via Diocleziano 328, 80124 Napoli, ItalyIstituto per il Rilevamento Elettromagnetico dell’Ambiente, IREA-CNR, Via Diocleziano 328, 80124 Napoli, ItalyIstituto per il Rilevamento Elettromagnetico dell’Ambiente, IREA-CNR, Via Diocleziano 328, 80124 Napoli, ItalyOn 16 September 2015, a Mw 8.3 interplate thrust earthquake ruptured offshore the Illapel region (Chile). Here, we perform coseismic slip fault modeling based on multi-orbit Sentinel 1-A (S1A) data. To do this, we generate ascending and descending S1A interferograms, whose combination allows us to retrieve the EW and vertical components of deformation. In particular, the EW displacement map highlights a westward displacement of about 210 cm, while the vertical map shows an uplift of about 25 cm along the coast, surrounded by a subsidence of about 20 cm. Following this analysis, we jointly invert the multi-orbit S1A interferograms by using an analytical approach to search for the coseismic fault parameters and related slip values. Most of the slip occurs northwest of the epicenter, with a maximum located in the shallowest 20 km. Finally, we refine our modeling approach by exploiting the Finite Element method, which allows us to take geological and structural complexities into account to simulate the slip along the slab curvature, the von Mises stress distribution, and the principal stress axes orientation. The von Mises stress distribution shows a close similarity to the depth distribution of the aftershock hypocenters. Likewise, the maximum principal stress orientation highlights a compressive regime in correspondence of the deeper portion of the slab and an extensional regime at its shallower segment; these findings are supported by seismological data.http://www.mdpi.com/2072-4292/8/4/323Illapel (Chile) earthquakeSentinel 1-ADInSARfault slip analytical model2D Finite Element model |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Giuseppe Solaro Vincenzo De Novellis Raffaele Castaldo Claudio De Luca Riccardo Lanari Michele Manunta Francesco Casu |
spellingShingle |
Giuseppe Solaro Vincenzo De Novellis Raffaele Castaldo Claudio De Luca Riccardo Lanari Michele Manunta Francesco Casu Coseismic Fault Model of Mw 8.3 2015 Illapel Earthquake (Chile) Retrieved from Multi-Orbit Sentinel1-A DInSAR Measurements Remote Sensing Illapel (Chile) earthquake Sentinel 1-A DInSAR fault slip analytical model 2D Finite Element model |
author_facet |
Giuseppe Solaro Vincenzo De Novellis Raffaele Castaldo Claudio De Luca Riccardo Lanari Michele Manunta Francesco Casu |
author_sort |
Giuseppe Solaro |
title |
Coseismic Fault Model of Mw 8.3 2015 Illapel Earthquake (Chile) Retrieved from Multi-Orbit Sentinel1-A DInSAR Measurements |
title_short |
Coseismic Fault Model of Mw 8.3 2015 Illapel Earthquake (Chile) Retrieved from Multi-Orbit Sentinel1-A DInSAR Measurements |
title_full |
Coseismic Fault Model of Mw 8.3 2015 Illapel Earthquake (Chile) Retrieved from Multi-Orbit Sentinel1-A DInSAR Measurements |
title_fullStr |
Coseismic Fault Model of Mw 8.3 2015 Illapel Earthquake (Chile) Retrieved from Multi-Orbit Sentinel1-A DInSAR Measurements |
title_full_unstemmed |
Coseismic Fault Model of Mw 8.3 2015 Illapel Earthquake (Chile) Retrieved from Multi-Orbit Sentinel1-A DInSAR Measurements |
title_sort |
coseismic fault model of mw 8.3 2015 illapel earthquake (chile) retrieved from multi-orbit sentinel1-a dinsar measurements |
publisher |
MDPI AG |
series |
Remote Sensing |
issn |
2072-4292 |
publishDate |
2016-04-01 |
description |
On 16 September 2015, a Mw 8.3 interplate thrust earthquake ruptured offshore the Illapel region (Chile). Here, we perform coseismic slip fault modeling based on multi-orbit Sentinel 1-A (S1A) data. To do this, we generate ascending and descending S1A interferograms, whose combination allows us to retrieve the EW and vertical components of deformation. In particular, the EW displacement map highlights a westward displacement of about 210 cm, while the vertical map shows an uplift of about 25 cm along the coast, surrounded by a subsidence of about 20 cm. Following this analysis, we jointly invert the multi-orbit S1A interferograms by using an analytical approach to search for the coseismic fault parameters and related slip values. Most of the slip occurs northwest of the epicenter, with a maximum located in the shallowest 20 km. Finally, we refine our modeling approach by exploiting the Finite Element method, which allows us to take geological and structural complexities into account to simulate the slip along the slab curvature, the von Mises stress distribution, and the principal stress axes orientation. The von Mises stress distribution shows a close similarity to the depth distribution of the aftershock hypocenters. Likewise, the maximum principal stress orientation highlights a compressive regime in correspondence of the deeper portion of the slab and an extensional regime at its shallower segment; these findings are supported by seismological data. |
topic |
Illapel (Chile) earthquake Sentinel 1-A DInSAR fault slip analytical model 2D Finite Element model |
url |
http://www.mdpi.com/2072-4292/8/4/323 |
work_keys_str_mv |
AT giuseppesolaro coseismicfaultmodelofmw832015illapelearthquakechileretrievedfrommultiorbitsentinel1adinsarmeasurements AT vincenzodenovellis coseismicfaultmodelofmw832015illapelearthquakechileretrievedfrommultiorbitsentinel1adinsarmeasurements AT raffaelecastaldo coseismicfaultmodelofmw832015illapelearthquakechileretrievedfrommultiorbitsentinel1adinsarmeasurements AT claudiodeluca coseismicfaultmodelofmw832015illapelearthquakechileretrievedfrommultiorbitsentinel1adinsarmeasurements AT riccardolanari coseismicfaultmodelofmw832015illapelearthquakechileretrievedfrommultiorbitsentinel1adinsarmeasurements AT michelemanunta coseismicfaultmodelofmw832015illapelearthquakechileretrievedfrommultiorbitsentinel1adinsarmeasurements AT francescocasu coseismicfaultmodelofmw832015illapelearthquakechileretrievedfrommultiorbitsentinel1adinsarmeasurements |
_version_ |
1725723133615276032 |