Reliable Adaptive Data Aggregation Route Strategy for a Trade-off between Energy and Lifetime in WSNs

Mobile security is one of the most fundamental problems in Wireless Sensor Networks (WSNs). The data transmission path will be compromised for some disabled nodes. To construct a secure and reliable network, designing an adaptive route strategy which optimizes energy consumption and network lifetime...

Full description

Bibliographic Details
Main Authors: Wenzhong Guo, Wei Hong, Bin Zhang, Yuzhong Chen, Naixue Xiong
Format: Article
Language:English
Published: MDPI AG 2014-09-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/14/9/16972
Description
Summary:Mobile security is one of the most fundamental problems in Wireless Sensor Networks (WSNs). The data transmission path will be compromised for some disabled nodes. To construct a secure and reliable network, designing an adaptive route strategy which optimizes energy consumption and network lifetime of the aggregation cost is of great importance. In this paper, we address the reliable data aggregation route problem for WSNs. Firstly, to ensure nodes work properly, we propose a data aggregation route algorithm which improves the energy efficiency in the WSN. The construction process achieved through discrete particle swarm optimization (DPSO) saves node energy costs. Then, to balance the network load and establish a reliable network, an adaptive route algorithm with the minimal energy and the maximum lifetime is proposed. Since it is a non-linear constrained multi-objective optimization problem, in this paper we propose a DPSO with the multi-objective fitness function combined with the phenotype sharing function and penalty function to find available routes. Experimental results show that compared with other tree routing algorithms our algorithm can effectively reduce energy consumption and trade off energy consumption and network lifetime.
ISSN:1424-8220