Modulation of Hippocampal Activity by Vagus Nerve Stimulation in Freely Moving Rats

Background: Vagus Nerve Stimulation (VNS) has seizure-suppressing effects but the underlying mechanism is not fully understood. To further elucidate the mechanisms underlying VNS-induced seizure suppression at a neurophysiological level, the present study examined effects of VNS on hippocampal excit...

Full description

Bibliographic Details
Main Authors: Lars Emil Larsen, Wytse Jan Wadman, Pieter van Mierlo, Jean Delbeke, Annelies Grimonprez, Bregt Van Nieuwenhuyse, Jeanelle Portelli, Paul Boon, Kristl Vonck, Robrecht Raedt
Format: Article
Language:English
Published: Elsevier 2016-01-01
Series:Brain Stimulation
Subjects:
EEG
Rat
Online Access:http://www.sciencedirect.com/science/article/pii/S1935861X15011304
Description
Summary:Background: Vagus Nerve Stimulation (VNS) has seizure-suppressing effects but the underlying mechanism is not fully understood. To further elucidate the mechanisms underlying VNS-induced seizure suppression at a neurophysiological level, the present study examined effects of VNS on hippocampal excitability using dentate gyrus evoked potentials (EPs) and hippocampal electroencephalography (EEG). Methods: Male Sprague–Dawley rats were implanted with a VNS electrode around the left vagus nerve. A bipolar stimulation electrode was implanted in the left perforant path and a bipolar recording electrode was implanted in the left dentate gyrus for EEG and dentate field EP recording. Following recovery, VNS was applied in freely moving animals, using a duty cycle of 7 s on/18 s off, 30 Hz frequency, 250 µs pulse width, and an intensity of either 0 (SHAM), 25 µA or 1000 µA, while continuously monitoring EEG and dentate field EPs. Results: VNS at 1000 µA modulated dentate field EPs by decreasing the field excitatory post-synaptic potential (fEPSP) slope and increasing the latency and amplitude of the population spike. It additionally influenced hippocampal EEG by slowing theta rhythm from 7 Hz to 5 Hz and reducing theta peak and gamma band power. No effects were observed in the SHAM or 25 µA VNS conditions. Conclusion: VNS modulated hippocampal excitability of freely moving rats in a complex way. It decreased synaptic efficacy, reflected by decreased fEPSP slope and EEG power, but it simultaneously facilitated dentate granule cell discharge indicating depolarization of dentate granule cells.
ISSN:1935-861X