Turning the resistive MHD into a stochastic field theory

Classical systems stirred by random forces of given statistics may be described via a path integral formulation in which their degrees of freedom are stochastic variables themselves, undergoing a multiple-history probabilistic evolution. This framework seems to be easily applicable to resistive Magn...

Full description

Bibliographic Details
Main Authors: M. Materassi, G. Consolini
Format: Article
Language:English
Published: Copernicus Publications 2008-08-01
Series:Nonlinear Processes in Geophysics
Online Access:http://www.nonlin-processes-geophys.net/15/701/2008/npg-15-701-2008.pdf
id doaj-1f9f693880014c8eb7816078758c5c5b
record_format Article
spelling doaj-1f9f693880014c8eb7816078758c5c5b2020-11-24T22:45:37ZengCopernicus PublicationsNonlinear Processes in Geophysics1023-58091607-79462008-08-01154701709Turning the resistive MHD into a stochastic field theoryM. MaterassiG. ConsoliniClassical systems stirred by random forces of given statistics may be described via a path integral formulation in which their degrees of freedom are stochastic variables themselves, undergoing a multiple-history probabilistic evolution. This framework seems to be easily applicable to resistive Magneto-Hydro-Dynamics (MHD). Indeed, MHD equations form a dynamic system of classical variables in which the terms representing the density, the pressure and the conductivity of the plasma are irregular functions of space and time when turbulence occurs. By treating those irregular terms as random stirring forces, it is possible to introduce a Stochastic Field Theory which should represent correctly the impulsive phenomena caused by the spece- and time-irregularity of plasma turbulence. This work is motivated by the recent observational evidences of the crucial role played by stochastic fluctuations in space plasmas. http://www.nonlin-processes-geophys.net/15/701/2008/npg-15-701-2008.pdf
collection DOAJ
language English
format Article
sources DOAJ
author M. Materassi
G. Consolini
spellingShingle M. Materassi
G. Consolini
Turning the resistive MHD into a stochastic field theory
Nonlinear Processes in Geophysics
author_facet M. Materassi
G. Consolini
author_sort M. Materassi
title Turning the resistive MHD into a stochastic field theory
title_short Turning the resistive MHD into a stochastic field theory
title_full Turning the resistive MHD into a stochastic field theory
title_fullStr Turning the resistive MHD into a stochastic field theory
title_full_unstemmed Turning the resistive MHD into a stochastic field theory
title_sort turning the resistive mhd into a stochastic field theory
publisher Copernicus Publications
series Nonlinear Processes in Geophysics
issn 1023-5809
1607-7946
publishDate 2008-08-01
description Classical systems stirred by random forces of given statistics may be described via a path integral formulation in which their degrees of freedom are stochastic variables themselves, undergoing a multiple-history probabilistic evolution. This framework seems to be easily applicable to resistive Magneto-Hydro-Dynamics (MHD). Indeed, MHD equations form a dynamic system of classical variables in which the terms representing the density, the pressure and the conductivity of the plasma are irregular functions of space and time when turbulence occurs. By treating those irregular terms as random stirring forces, it is possible to introduce a Stochastic Field Theory which should represent correctly the impulsive phenomena caused by the spece- and time-irregularity of plasma turbulence. This work is motivated by the recent observational evidences of the crucial role played by stochastic fluctuations in space plasmas.
url http://www.nonlin-processes-geophys.net/15/701/2008/npg-15-701-2008.pdf
work_keys_str_mv AT mmaterassi turningtheresistivemhdintoastochasticfieldtheory
AT gconsolini turningtheresistivemhdintoastochasticfieldtheory
_version_ 1725687708065464320