Metagenomic analysis of nitrogen‐cycling genes in upper Mississippi river sediment with mussel assemblages
Abstract We investigated the impact of native freshwater mussel assemblages (order Unionoida) on the abundance and composition of nitrogen‐cycling genes in sediment of an upper Mississippi river habitat. We hypothesized that the genomic potential for ammonia and nitrite oxidation would be greater in...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-05-01
|
Series: | MicrobiologyOpen |
Subjects: | |
Online Access: | https://doi.org/10.1002/mbo3.739 |
id |
doaj-1f8a4ebb397f41dc900961ac86feb153 |
---|---|
record_format |
Article |
spelling |
doaj-1f8a4ebb397f41dc900961ac86feb1532020-11-25T01:12:10ZengWileyMicrobiologyOpen2045-88272019-05-0185n/an/a10.1002/mbo3.739Metagenomic analysis of nitrogen‐cycling genes in upper Mississippi river sediment with mussel assemblagesEllen M. Black0Michael S. Chimenti1Craig L. Just2Department of Civil and Environmental Engineering University of Iowa Iowa City IowaIowa Institute of Human Genetics Carver College of Medicine University of Iowa Iowa City IowaDepartment of Civil and Environmental Engineering University of Iowa Iowa City IowaAbstract We investigated the impact of native freshwater mussel assemblages (order Unionoida) on the abundance and composition of nitrogen‐cycling genes in sediment of an upper Mississippi river habitat. We hypothesized that the genomic potential for ammonia and nitrite oxidation would be greater in the sediment with mussel assemblages, presumably due to mussel biodeposition products, namely ammonia and organic carbon. Regardless of the presence of mussels, upper Mississippi river sediment microbial communities had the largest genomic potential for nitrogen fixation followed by urea catabolism, nitrate metabolism, and nitrate assimilation, as evidenced by analysis of nitrogen cycling pathway abundances. However, genes encoding nitrate and nitrite redox reactions, narGHI and nxrAB, were the most abundant functional genes of the nitrogen cycling gene families. Using linear discriminant analysis (LDA), we found nitrification genes were the most important biomarkers for nitrogen cycling genomic potential when mussels were present, and this presented an opposing effect on the abundance of genes encoding nitric oxide reduction. The genes involved in nitrification that increased the most were amoA associated with comammox Nitrospira and nxr homologs associated with Nitrospira. On the other hand, the most distinctive biomarkers of microbial communities without mussels were norB and nrfA, as part of denitrification and dissimilatory nitrate reduction to ammonium pathways, respectively. Ultimately, this research demonstrates the impact of native mollusks on microbial nitrogen cycling in an aquatic agroecosystem.https://doi.org/10.1002/mbo3.739freshwater musselsmetagenomicsN‐cyclenitrificationNitrospirasediment |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ellen M. Black Michael S. Chimenti Craig L. Just |
spellingShingle |
Ellen M. Black Michael S. Chimenti Craig L. Just Metagenomic analysis of nitrogen‐cycling genes in upper Mississippi river sediment with mussel assemblages MicrobiologyOpen freshwater mussels metagenomics N‐cycle nitrification Nitrospira sediment |
author_facet |
Ellen M. Black Michael S. Chimenti Craig L. Just |
author_sort |
Ellen M. Black |
title |
Metagenomic analysis of nitrogen‐cycling genes in upper Mississippi river sediment with mussel assemblages |
title_short |
Metagenomic analysis of nitrogen‐cycling genes in upper Mississippi river sediment with mussel assemblages |
title_full |
Metagenomic analysis of nitrogen‐cycling genes in upper Mississippi river sediment with mussel assemblages |
title_fullStr |
Metagenomic analysis of nitrogen‐cycling genes in upper Mississippi river sediment with mussel assemblages |
title_full_unstemmed |
Metagenomic analysis of nitrogen‐cycling genes in upper Mississippi river sediment with mussel assemblages |
title_sort |
metagenomic analysis of nitrogen‐cycling genes in upper mississippi river sediment with mussel assemblages |
publisher |
Wiley |
series |
MicrobiologyOpen |
issn |
2045-8827 |
publishDate |
2019-05-01 |
description |
Abstract We investigated the impact of native freshwater mussel assemblages (order Unionoida) on the abundance and composition of nitrogen‐cycling genes in sediment of an upper Mississippi river habitat. We hypothesized that the genomic potential for ammonia and nitrite oxidation would be greater in the sediment with mussel assemblages, presumably due to mussel biodeposition products, namely ammonia and organic carbon. Regardless of the presence of mussels, upper Mississippi river sediment microbial communities had the largest genomic potential for nitrogen fixation followed by urea catabolism, nitrate metabolism, and nitrate assimilation, as evidenced by analysis of nitrogen cycling pathway abundances. However, genes encoding nitrate and nitrite redox reactions, narGHI and nxrAB, were the most abundant functional genes of the nitrogen cycling gene families. Using linear discriminant analysis (LDA), we found nitrification genes were the most important biomarkers for nitrogen cycling genomic potential when mussels were present, and this presented an opposing effect on the abundance of genes encoding nitric oxide reduction. The genes involved in nitrification that increased the most were amoA associated with comammox Nitrospira and nxr homologs associated with Nitrospira. On the other hand, the most distinctive biomarkers of microbial communities without mussels were norB and nrfA, as part of denitrification and dissimilatory nitrate reduction to ammonium pathways, respectively. Ultimately, this research demonstrates the impact of native mollusks on microbial nitrogen cycling in an aquatic agroecosystem. |
topic |
freshwater mussels metagenomics N‐cycle nitrification Nitrospira sediment |
url |
https://doi.org/10.1002/mbo3.739 |
work_keys_str_mv |
AT ellenmblack metagenomicanalysisofnitrogencyclinggenesinuppermississippiriversedimentwithmusselassemblages AT michaelschimenti metagenomicanalysisofnitrogencyclinggenesinuppermississippiriversedimentwithmusselassemblages AT craigljust metagenomicanalysisofnitrogencyclinggenesinuppermississippiriversedimentwithmusselassemblages |
_version_ |
1725168176834019328 |