Shifting molecular localization by plasmonic coupling in a single-molecule mirage
The near-field interaction of single emitters and plasmonic structures can alter the perceived physical location of the emitter. Here, Raabet al. use DNA origami and far-field super-resolution microscopy to quantitatively evaluate this localization offset for gold nanoparticles.
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2017-01-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/ncomms13966 |
Summary: | The near-field interaction of single emitters and plasmonic structures can alter the perceived physical location of the emitter. Here, Raabet al. use DNA origami and far-field super-resolution microscopy to quantitatively evaluate this localization offset for gold nanoparticles. |
---|---|
ISSN: | 2041-1723 |