The GLP-1 Analogue Exenatide Improves Hepatic and Muscle Insulin Sensitivity in Diabetic Rats: Tracer Studies in the Basal State and during Hyperinsulinemic-Euglycemic Clamp

Objective. Glucagon-like peptide-1 (GLP-1) analogues (e.g., exenatide) increase insulin secretion in diabetes but less is known about their effects on glucose production or insulin-stimulated glucose uptake in peripheral tissues. Methods. Four groups of Sprague-Dawley rats were studied: nondiabetic...

Full description

Bibliographic Details
Main Authors: Hui Wu, Chunhua Sui, Hui Xu, Fangzhen Xia, Hualing Zhai, Huixin Zhang, Pan Weng, Bing Han, Sichun Du, Yingli Lu
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:Journal of Diabetes Research
Online Access:http://dx.doi.org/10.1155/2014/524517
Description
Summary:Objective. Glucagon-like peptide-1 (GLP-1) analogues (e.g., exenatide) increase insulin secretion in diabetes but less is known about their effects on glucose production or insulin-stimulated glucose uptake in peripheral tissues. Methods. Four groups of Sprague-Dawley rats were studied: nondiabetic (control, C); nondiabetic + exenatide (C + E); diabetic (D); diabetic + exenatide (D + E) with diabetes induced by streptozotocin and high fat diet. Infusion of 3-3H-glucose and U-13C-glycerol was used to measure basal rates of appearance (Ra) of glucose and glycerol and gluconeogenesis from glycerol (GNG). During hyperinsulinemic-euglycemic clamp, glucose uptake into gastrocnemius muscles was measured with 2-deoxy-D-14C-glucose. Results. In the diabetic rats, exenatide reduced the basal Ra of glucose (P<0.01) and glycerol (P<0.01) and GNG (P<0.001). During the clamp, Ra of glucose was also reduced, whereas the rate of disappearance of glucose increased and there was increased glucose uptake into muscle (P<0.01) during the clamp. In the nondiabetic rats, exenatide had no effect. Conclusion. In addition to its known effects on insulin secretion, administration of the GLP-1 analogue, exenatide, is associated with increased inhibition of gluconeogenesis and improved glucose uptake into muscle in diabetic rats, implying improved hepatic and peripheral insulin sensitivity.
ISSN:2314-6745
2314-6753