Summary: | Enterococcus spp., known for their wide ecological distribution, have been associated with various fermented food products of plant and animal origin. The strains used in this study, bacteriocinogenic Enterococcus faecium previously isolated from artisanal soybean paste, have shown strong activity against Listeria spp. and vancomycin-resistant enterococci. Although their antimicrobial activity is considered beneficial, the potential application of enterococci is still under debate due to concerns about their safety for human and other animal consumption. Therefore, this study not only focuses on the screening of potential virulence factors, but also the auxiliary beneficial properties of the strains Ent. faecium ST651ea, ST7119ea, and ST7319ea. Phenotypic screening for gelatinase, hemolysin, and biogenic amine production showed that the strains were all safe. Furthermore, the antibiogram profiling showed that all the strains were susceptible to the panel of antibiotics used in the assessment except for erythromycin. Yet, Ent. faecium ST7319ea was found to carry some of the virulence genes used in the molecular screening for safety including hyl, esp, and IS16. The probiotic potential and other beneficial properties of the strains were also studied, demonstrating high aggregation and co-aggregation levels compared to previously characterized strains, in addition to high survivability under simulated gastrointestinal conditions, and production of numerous desirable enzymes as evaluated by APIZym, indicating diverse possible biotechnological applications of these strains. Additionally, the strains were found to carry genes coding for γ-aminobutyric acid (GABA) production, an auxiliary characteristic for their probiotic potential. Although these tests showed relatively favorable characteristics, it should be considered that these assays were carried out in vitro and should therefore also be assessed under in vivo conditions.
|