On the Convergence Rate of Kernel-Based Sequential Greedy Regression
A kernel-based greedy algorithm is presented to realize efficient sparse learning with data-dependent basis functions. Upper bound of generalization error is obtained based on complexity measure of hypothesis space with covering numbers. A careful analysis shows the error has a satisfactory decay ra...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2012-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2012/619138 |