Spinors fields in co-dimension one braneworlds
Abstract In this work we analyze the zero mode localization and resonances of 1/2−spin fermions in co-dimension one Randall-Sundrum braneworld scenarios. We consider delta-like, domain walls and deformed domain walls membranes. Beyond the influence of the spacetime dimension D we also consider three...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-02-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1007/JHEP02(2018)018 |
id |
doaj-1ef9c3daf11c409ca5e2e33bb39ceeb3 |
---|---|
record_format |
Article |
spelling |
doaj-1ef9c3daf11c409ca5e2e33bb39ceeb32020-11-25T00:44:14ZengSpringerOpenJournal of High Energy Physics1029-84792018-02-012018212810.1007/JHEP02(2018)018Spinors fields in co-dimension one braneworldsW.M. Mendes0G. Alencar1R.R. Landim2Departamento de Física, Universidade Federal do CearáDepartamento de Física, Universidade Federal do CearáDepartamento de Física, Universidade Federal do CearáAbstract In this work we analyze the zero mode localization and resonances of 1/2−spin fermions in co-dimension one Randall-Sundrum braneworld scenarios. We consider delta-like, domain walls and deformed domain walls membranes. Beyond the influence of the spacetime dimension D we also consider three types of couplings: (i) the standard Yukawa coupling with the scalar field and parameter η 1, (ii) a Yukawa-dilaton coupling with two parameters η 2 and λ and (iii) a dilaton derivative coupling with parameter h. Together with the deformation parameter s, we end up with five free parameter to be considered. For the zero mode we find that the localization is dependent of D, because the spinorial representation changes when the bulk dimensionality is odd or even and must be treated separately. For case (i) we find that in odd dimensions only one chirality can be localized and for even dimension a massless Dirac spinor is trapped over the brane. In the cases (ii) and (iii) we find that for some values of the parameters, both chiralities can be localized in odd dimensions and for even dimensions we obtain that the massless Dirac spinor is trapped over the brane. We also calculated numerically resonances for cases (ii) and (iii) by using the transfer matrix method. We find that, for deformed defects, the increasing of D induces a shift in the peaks of resonances. For a given λ with domain walls, we find that the resonances can show up by changing the spacetime dimensionality. For example, the same case in D = 5 do not induces resonances but when we consider D = 10 one peak of resonance is found. Therefore the introduction of more dimensions, diversely from the bosonic case, can change drastically the zero mode and resonances in fermion fields.http://link.springer.com/article/10.1007/JHEP02(2018)018Field Theories in Higher DimensionsLarge Extra Dimensions |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
W.M. Mendes G. Alencar R.R. Landim |
spellingShingle |
W.M. Mendes G. Alencar R.R. Landim Spinors fields in co-dimension one braneworlds Journal of High Energy Physics Field Theories in Higher Dimensions Large Extra Dimensions |
author_facet |
W.M. Mendes G. Alencar R.R. Landim |
author_sort |
W.M. Mendes |
title |
Spinors fields in co-dimension one braneworlds |
title_short |
Spinors fields in co-dimension one braneworlds |
title_full |
Spinors fields in co-dimension one braneworlds |
title_fullStr |
Spinors fields in co-dimension one braneworlds |
title_full_unstemmed |
Spinors fields in co-dimension one braneworlds |
title_sort |
spinors fields in co-dimension one braneworlds |
publisher |
SpringerOpen |
series |
Journal of High Energy Physics |
issn |
1029-8479 |
publishDate |
2018-02-01 |
description |
Abstract In this work we analyze the zero mode localization and resonances of 1/2−spin fermions in co-dimension one Randall-Sundrum braneworld scenarios. We consider delta-like, domain walls and deformed domain walls membranes. Beyond the influence of the spacetime dimension D we also consider three types of couplings: (i) the standard Yukawa coupling with the scalar field and parameter η 1, (ii) a Yukawa-dilaton coupling with two parameters η 2 and λ and (iii) a dilaton derivative coupling with parameter h. Together with the deformation parameter s, we end up with five free parameter to be considered. For the zero mode we find that the localization is dependent of D, because the spinorial representation changes when the bulk dimensionality is odd or even and must be treated separately. For case (i) we find that in odd dimensions only one chirality can be localized and for even dimension a massless Dirac spinor is trapped over the brane. In the cases (ii) and (iii) we find that for some values of the parameters, both chiralities can be localized in odd dimensions and for even dimensions we obtain that the massless Dirac spinor is trapped over the brane. We also calculated numerically resonances for cases (ii) and (iii) by using the transfer matrix method. We find that, for deformed defects, the increasing of D induces a shift in the peaks of resonances. For a given λ with domain walls, we find that the resonances can show up by changing the spacetime dimensionality. For example, the same case in D = 5 do not induces resonances but when we consider D = 10 one peak of resonance is found. Therefore the introduction of more dimensions, diversely from the bosonic case, can change drastically the zero mode and resonances in fermion fields. |
topic |
Field Theories in Higher Dimensions Large Extra Dimensions |
url |
http://link.springer.com/article/10.1007/JHEP02(2018)018 |
work_keys_str_mv |
AT wmmendes spinorsfieldsincodimensiononebraneworlds AT galencar spinorsfieldsincodimensiononebraneworlds AT rrlandim spinorsfieldsincodimensiononebraneworlds |
_version_ |
1725275519876857856 |