Phosphorus Release from Sediments in a Raw Water Reservoir with Reduced Allochthonous Input

Following successful abatement of external nutrient sources, one must shift the focus to the role of phosphorus (P) release from sediment. This enables us to better assess the causes for sustained eutrophication in freshwater ecosystem and how to deal with this challenge. In this study, five sedimen...

Full description

Bibliographic Details
Main Authors: Bin Zhou, Xujin Fu, Ben Wu, Jia He, Rolf D. Vogt, Dan Yu, Fujun Yue, Man Chai
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/13/14/1983
Description
Summary:Following successful abatement of external nutrient sources, one must shift the focus to the role of phosphorus (P) release from sediment. This enables us to better assess the causes for sustained eutrophication in freshwater ecosystem and how to deal with this challenge. In this study, five sediment cores from the shallow YuQiao Reservoir in northern China were investigated. The reservoir serves as the main raw water source for tap water services of Tianjin megacity, with a population of 15.6 million. Sediment characteristics and P fractions were determined in order to assess the role of the sediments as the P source to the water body. The total P content (TP) in sediments was similar to what was found in catchment soils, although the P sorption capacity of sediments was 7–10 times greater than for the catchment soils. Isotherm adsorption experiments documented that when P concentration in overlying water drops below 0.032–0.070 mg L<sup>−1</sup>, depending on the site, the sediment contributes with a positive flux of P to the overlying water. Adsorbed P at different depths in the sediments is found to be released with a similarly rapid release rate during the first 20 h, though chronic release was observed mainly from the top 30 cm of the sediment core. Dredging the top 30 cm layer of the sediments will decrease the level of soluble reactive phosphate in the water being sustained by the sediment flux of P.
ISSN:2073-4441