Three-Dimensional Atomic Force Microscopy for Sidewall Imaging Using Torsional Resonance Mode
This article presents an atomic force microscopy (AFM) technique for true three-dimensional (3D) characterization. The cantilever probe with flared tip was used in a home-made 3D-AFM system. The cantilever was driven by two shaking piezoceramics and oscillated around its vertical or torsional resona...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi-Wiley
2018-01-01
|
Series: | Scanning |
Online Access: | http://dx.doi.org/10.1155/2018/7606037 |
Summary: | This article presents an atomic force microscopy (AFM) technique for true three-dimensional (3D) characterization. The cantilever probe with flared tip was used in a home-made 3D-AFM system. The cantilever was driven by two shaking piezoceramics and oscillated around its vertical or torsional resonance frequency. The vertical resonance mode was used for upper surface imaging, and the torsional resonance mode was used for sidewall detecting. The 3D-AFM was applied to measure standard gratings with the height of 100 nm and 200 nm. The experiment results showed that the presented 3D-AFM technique was able to detect the small defect features on the steep sidewall and to reconstruct the 3D topography of the measured structure. |
---|---|
ISSN: | 0161-0457 1932-8745 |