Degradation of polycyclic aromatic hydrocarbons (phenanthrene and pyrene) by the ligninolytic fungi Ganoderma lucidum isolated from the hardwood stump

Abstract Background Due to progress in science and technology, several harmful polycyclic aromatic hydrocarbons are synthesized and released into the environment. In the present investigation, a phenanthrene- and pyrene-degrading white rot fungi Ganoderma lucidum strain CCG1 was isolated from the Ja...

Full description

Bibliographic Details
Main Authors: Nikki Agrawal, Preeti Verma, Sushil Kumar Shahi
Format: Article
Language:English
Published: SpringerOpen 2018-03-01
Series:Bioresources and Bioprocessing
Subjects:
Online Access:http://link.springer.com/article/10.1186/s40643-018-0197-5
Description
Summary:Abstract Background Due to progress in science and technology, several harmful polycyclic aromatic hydrocarbons are synthesized and released into the environment. In the present investigation, a phenanthrene- and pyrene-degrading white rot fungi Ganoderma lucidum strain CCG1 was isolated from the Janjgir Champa district of Chhattisgarh, India, and then the degradation of phenanthrene and pyrene was estimated by high-performance liquid chromatography. Results It was found that G. lucidum able to degrade 99.65% of 20 mg/L of phenanthrene and 99.58% of pyrene in mineral salt broth after 30th day of incubation at 27 °C. G. lucidum produced significant amounts (p < 0.0001) of ligninolytic enzymes (Laccase, lignin peroxidase and manganese peroxidase) in the phenanthrene- and pyrene-containing mineral salt broth. G. lucidum produced maximum 10,788.00 U/L laccase, 3283.00 U/L Lignin peroxidase and 47,444.00 U/L Manganese peroxidase enzymes in the presence of phenanthrene and produced maximum 10,166.00 U/L laccase, 3613.00 U/L lignin peroxidase and 50,977.00 U/L manganese peroxidase enzymes in the presence of pyrene. Therefore, G. lucidum will be a potent phenanthrene and pyrene degrader from the environment.
ISSN:2197-4365