Synergistic Effect of Combinations Containing EDTA and the Antimicrobial Peptide AA230, an Arenicin-3 Derivative, on Gram-Negative Bacteria

The worldwide occurrence of resistance to standard antibiotics and lack of new antibacterial drugs demand new strategies to treat complicated infections. Hence, the aim of this study was to examine the antibacterial activities of an antimicrobial peptide, arenicin-3 derivative AA230, and ethylenedia...

Full description

Bibliographic Details
Main Authors: Anita Umerska, Magnus Strandh, Viviane Cassisa, Nada Matougui, Matthieu Eveillard, Patrick Saulnier
Format: Article
Language:English
Published: MDPI AG 2018-10-01
Series:Biomolecules
Subjects:
Online Access:https://www.mdpi.com/2218-273X/8/4/122
Description
Summary:The worldwide occurrence of resistance to standard antibiotics and lack of new antibacterial drugs demand new strategies to treat complicated infections. Hence, the aim of this study was to examine the antibacterial activities of an antimicrobial peptide, arenicin-3 derivative AA230, and ethylenediaminetetraacetic acid (EDTA) as well as the two compounds in combination against Gram-negative bacteria. AA230 showed strong antibacterial activity against all of the studied standard strains and clinical isolates, with minimum inhibitory concentrations ranging between 1 &#181;g/mL and 8 &#181;g/mL. AA230 exhibited a bactericidal mode of action. EDTA inhibited the growth of <i>Acinetobacter baumannii</i> at 500&#8315;1000 &#181;g/mL. Strains of <i>Acinetobacter baumannii</i> were found to be more susceptible to EDTA than <i>Pseudomonas aeruginosa</i> or <i>Escherichia coli</i>. The antibacterial effects of both AA230 and EDTA were independent of the antibiotic resistance patterns. Indifference to synergistic activity was observed for AA230 and EDTA combinations using checkerboard titration. In time-kill studies, a substantial synergistic interaction between AA230 and EDTA was detected against all of the tested strains. The addition of EDTA enabled a 2&#8315;4-fold decrease in the AA230 dose. In conclusion, AA230 could have potential applications in the treatment of infections caused by Gram-negative organisms, and its effect can be potentiated by EDTA.
ISSN:2218-273X